• Prime square alloy steel billet 80mm Q235 System 1
  • Prime square alloy steel billet 80mm Q235 System 2
  • Prime square alloy steel billet 80mm Q235 System 3
  • Prime square alloy steel billet 80mm Q235 System 4
  • Prime square alloy steel billet 80mm Q235 System 5
  • Prime square alloy steel billet 80mm Q235 System 6
Prime square alloy steel billet 80mm Q235

Prime square alloy steel billet 80mm Q235

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Prime square alloy steel billet 80mm Q235

 Prime square alloy steel billet 80mm Q235

Description of Prime square alloy steel billet 80mm Q235 

1. Prepainted steel coil is coated with organic layer, which provides higher anti-corrosion property and a longer lifespan than that of galvanized or galvalume steel sheets. 

2. The base metals for prepainted steel coil consist of cold rolled, HDGI Steel, electro-galvanized and hot-dip alu-zinc coated steel. The finish coats of prepainted steel coil can be classified into groups as follows: polyester, silicon modified polyesters, polyvinylidene fluoride, high-durability polyester, etc.

3. The production process has evolved from one-coating-and-one-baking to double-coating-and-double-baking, and even three-coating-and-three-baking.

4. The color of the prepainted steel coil has a very wide selection, like orange, cream-colored, dark sky blue, sea blue, bright red, brick red, ivory white, porcelain blue, etc.

5. The prepainted steel coils can also be classified into groups by their surface textures, namely regular prepainted sheets, embossed sheets and printed sheets.

 Prime square alloy steel billet 80mm Q235

 

Main Feature of Prime square alloy steel billet 80mm Q235

Uncoated CR steel sheet 

With the features of in line with the international highest standards in demension and shape, excellent surface finish and properties, the products are mainly used in home appliance and automobile industries.

Galvanized steel sheet(include HDG and EG)

With the features of good corrosion resistance, the products are mainly used in automobile, home appliance, electronics, building and machinery manufacture industries, etc.

Precoated steel sheet

With the features of enviromental protection and good processablility, long lasting surface durability, rich in colors, the products are maily used in building, home appliance and furniture industries, etc.

 

Applications of Prime square alloy steel billet 80mm Q235

 A. Corrugated design makes it excellent waterproof performance
 B. Materials as prepainted steel sheets, galvanized steel sheets, galvalume (Al-Zn coated sheets) are available to make corrugated sheet.
 C.Those material are durable, anti-corrosion in bad weather for 20-30 years based on it's Zinc(Galvanized) coating or AZ (Galvalume) coating.
 D. Different shape of the sheet make it suitable for any style of buildings.
 E.Easy to install, no need special tools to fix the sheet.
 F.Light weight due to high strength to weight ratio of steel. Light weight means easier handling lower shipping costs, easier installation
 G. Different color is availbe base on the RAL Standard make your building more beautiful.
 H. We will provide the best solutions if you don't have a exact idea of the specification you want for the steel sheet based on your weather conditions, engineering structure, construction budget and so on.

  Prime square alloy steel billet 80mm Q235

 

Specifications of Prime square alloy steel billet 80mm Q235

Product

Billet

Material Grade

SGCC / SGCH  / DX51D+AZ, etc

Thickness

0.6-3.0mm

Width

500-1500mm

Tolerance

Thickness: +/-0.02mm , Width:+/-2mm

Zinc-coating

Z30-150g/m2

Technique

Raw material: Hot rolled steel coil --> Cold rolled_>hot dipped galvalume

Surface

Dried, Chromated, Unoiled

Spangle

Regular spangle , small spangle, zero spangle

ID

508MM 610MM

Coil weight

1-25MT

Export package

Cardboard inner sleeves, Waterproof paper, galvanized steel covered and steel strip packed

  

FAQ of Prime square alloy steel billet 80mm Q235

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
we always fix steel produce in container well to make it safe arrive at destination port 
we always provide best and professional forward service for our buyer 
we always apply 14days free detention for our buyers container in destination
we provide one set After-sales service for our buyer 
we provide China inland steel market price report 
we help our buyer become number one in local market .

Q:How are steel billets used in the manufacturing of valves and fittings?
Steel billets are an essential raw material used in the manufacturing of valves and fittings. These billets are solid, semi-finished steel forms that are cast into specific shapes and sizes. To begin the manufacturing process, steel billets are heated to a high temperature and then passed through a series of rolling mills to shape them into the desired form. This process helps to refine the grain structure of the steel, enhancing its strength, ductility, and overall quality. Once the steel billets are shaped, they are further processed and machined to create various components of valves and fittings. These components include bodies, bonnets, stems, and other essential parts that make up the valve or fitting. The precision machining of the billets ensures that the dimensions are accurate and the surfaces are smooth, allowing for proper assembly and functioning of the valves and fittings. Steel billets also play a crucial role in providing the necessary strength and durability to valves and fittings. The high-quality steel used in these billets ensures that the final products can withstand the harsh operating conditions, pressure, and temperature variations they may encounter in their applications. Additionally, steel billets can be used to manufacture various types of valves and fittings, such as gate valves, ball valves, butterfly valves, and pipe fittings. This versatility allows manufacturers to produce a wide range of products to meet different industry requirements. In conclusion, steel billets are used in the manufacturing of valves and fittings as a primary raw material. Their shaping, processing, and machining ensure the production of high-quality components that provide strength, durability, and precision in the final products.
Q:How are steel billets used in the production of tooling?
Tooling production relies heavily on the use of steel billets, which are indispensable for creating tools and machinery components. These semi-finished steel products play a vital role in the process due to their exceptional properties. To begin with, the steel billets undergo a transformation process called forging, where they are heated and subjected to pressure to achieve the desired shape and size. This forging process forms the basis for manufacturing a wide range of tooling components, including dies, molds, punches, and cutting tools. The strength and durability of steel billets make them highly suitable for tooling applications. Steel is renowned for its high tensile strength, which allows tools to withstand heavy loads and resist deformation during operation. Additionally, steel billets can be heat-treated to enhance their hardness, toughness, and wear resistance, thereby improving the performance and longevity of the tools. Moreover, steel billets possess excellent machinability, enabling them to be easily cut, drilled, or shaped into intricate designs. This versatility empowers tooling manufacturers to create complex and customized components that meet specific industry requirements. Once the steel billets have been forged and machined into the desired shape, they undergo additional processes such as grinding, polishing, and coating to attain the final tooling product. These finishing processes ensure that the tool's surface is smooth, free from flaws, and resistant to corrosion. In conclusion, steel billets are essential in tooling production due to their strength, durability, and machinability. They serve as the starting point for manufacturing various tooling components used in industries ranging from automotive manufacturing to aerospace. The versatility and reliability of steel billets make them a vital material in ensuring the quality and performance of tools used across diverse applications.
Q:What are the main challenges in the handling of steel billets during production?
The main challenges in handling steel billets during production include ensuring proper transportation and storage to prevent damage, maintaining consistent temperature and humidity conditions to avoid material distortion or degradation, and implementing efficient handling techniques to minimize product loss and maximize productivity. Additionally, handling heavy and bulky billets can pose risks to worker safety, demanding proper training and equipment to mitigate potential accidents.
Q:How are steel billets preheated before processing?
Steel billets can be preheated before processing using various methods depending on the specific requirements of the process and the type of equipment available. One common method is the use of natural gas or propane-fired furnaces. The billets are placed inside the furnace, and the temperature is gradually increased to the desired preheating temperature. Another method is the use of induction heating. This involves placing the billets inside a coil, and an alternating current is passed through the coil, which generates a magnetic field. This magnetic field induces electric currents within the billets, resulting in heat generation and preheating of the steel. Additionally, some preheating processes utilize electric resistance heating. In this method, the billets are placed between two electrodes, and an electric current is passed through the electrodes. The resistance to the flow of current generates heat, which preheats the steel billets. Preheating of steel billets is crucial as it helps to reduce the thermal shock experienced during subsequent processing steps. It also improves the overall efficiency of the process, as preheated billets require less energy to reach the desired processing temperature. Moreover, preheating helps to enhance the mechanical properties of the steel, making it easier to shape and manipulate during processing.
Q:What are the different types of cutting machines used for steel billets?
There are several different types of cutting machines that are commonly used for cutting steel billets. These machines are designed to provide efficient and precise cuts, ensuring the desired dimensions and quality of the steel billets. 1. Bandsaw: Bandsaw machines are widely used for cutting steel billets. They feature a continuous loop of toothed metal blade that is guided around two or more wheels. The billet is fed into the machine and the blade cuts through the material with high precision. 2. Circular Saw: Circular saw machines use a circular metal blade with teeth to cut through the steel billets. They are commonly used for cutting large billets into smaller pieces. These machines can be operated manually or automatically, depending on the specific application. 3. Waterjet Cutting Machine: Waterjet cutting machines use a high-pressure stream of water mixed with abrasive materials to cut through steel billets. This method is known for its accuracy and versatility, as it can cut through various thicknesses and shapes with ease. 4. Plasma Cutting Machine: Plasma cutting machines utilize a plasma torch to cut through steel billets. The torch generates an electric arc, which is directed through a small nozzle that releases ionized gas. The heat from the arc melts the metal, while the gas blows away the molten material, resulting in a clean and precise cut. 5. Laser Cutting Machine: Laser cutting machines use a high-powered laser beam to cut through steel billets. The laser beam is focused on the material, melting or vaporizing it to create the desired cut. This method is known for its high precision and speed. 6. Shearing Machine: Shearing machines are commonly used for cutting steel billets into specific lengths or shapes. These machines use a blade or a pair of blades to apply a shearing force and cut through the material. They are often used in high-volume production settings. Each of these cutting machines has its own advantages and limitations, and the choice of machine depends on various factors such as the desired cut quality, speed, and the specific requirements of the steel billet cutting process.
Q:What are the potential applications of steel billets in the electronics industry?
Steel billets can be used in the electronics industry for various applications such as manufacturing electronic enclosures, brackets, and chassis for electronic devices. They can also be utilized for creating structural components and supports in electronic equipment. Additionally, steel billets are commonly used in the production of connectors, terminals, and pins for electrical connections.
Q:What are the different types of surface defect detection methods for steel billets?
Steel billets are subject to various methods of surface defect detection. Among the techniques commonly used are visual inspection, magnetic particle inspection, ultrasonic testing, eddy current testing, and laser scanning. 1. The simplest and most traditional method is visual inspection, where trained inspectors visually examine the surface of steel billets for cracks, scratches, or foreign material. 2. Magnetic Particle Inspection (MPI) is a non-destructive testing method that uses magnetic fields and iron particles to detect surface defects. The billet is magnetized, and iron particles are applied to the surface. Any defect causes a leakage of magnetic flux, attracting the iron particles and forming visible indications. 3. Ultrasonic Testing (UT) utilizes high-frequency sound waves to detect internal and surface defects in steel billets. Ultrasonic waves are emitted into the billet by a transducer, and the reflected waves are analyzed to identify flaws or irregularities. 4. Eddy Current Testing (ECT) makes use of electromagnetic induction to detect surface defects. A coil carrying an alternating current is placed near the billet's surface, generating eddy currents. Any variation in the surface, such as cracks or corrosion, alters the eddy currents, which are then detected by the instrument. 5. Laser Scanning is a relatively advanced method that employs laser technology to scan the surface of steel billets. The laser beam reflects off the surface, and a sensor analyzes the reflected light to identify surface defects like scratches or dents. These methods differ in terms of sensitivity, speed, and cost-effectiveness. The selection of the appropriate surface defect detection method depends on factors such as the required level of accuracy, the types of defects to be detected, and the specific requirements of the industry.
Q:How do steel billets contribute to the overall safety of a product?
Steel billets contribute to the overall safety of a product in several ways. Firstly, steel billets are manufactured using a controlled process that ensures a high level of quality and consistency in the material. This means that the steel produced from these billets will have consistent mechanical properties, such as strength and toughness, which are crucial for ensuring the safety of the final product. Additionally, steel billets undergo various testing and inspections during the manufacturing process to ensure that they meet the required specifications and standards. This includes checks for surface defects, internal soundness, and proper chemical composition. By ensuring that the steel billets are defect-free and meet the necessary quality standards, the risk of failure or malfunction in the final product is significantly reduced. Furthermore, steel billets are known for their exceptional strength and durability. Steel is a highly robust material that can withstand high temperatures, pressure, and impacts without deforming or breaking. This inherent strength makes steel billets particularly suitable for applications where safety is a priority, such as in the construction of buildings, bridges, and infrastructure. Moreover, steel billets can be easily shaped and formed into various components and structures, allowing for precise manufacturing and design. This versatility enables engineers and designers to create products with optimal safety features, such as reinforced beams or structures that can withstand extreme loads or impacts. The ability to customize steel billets to meet specific safety requirements ensures that the final product is tailored to address potential safety risks and hazards. Lastly, steel billets are highly resistant to corrosion, making them ideal for applications in harsh environments or exposure to corrosive substances. The resistance to corrosion ensures that the structural integrity of the product is maintained over time, reducing the likelihood of failures due to material degradation. In conclusion, steel billets contribute to the overall safety of a product by providing a high-quality, defect-free, strong, and durable material that can be customized to meet specific safety requirements. The controlled manufacturing process, rigorous testing, and inherent properties of steel make it an ideal choice for ensuring the safety and reliability of various products.
Q:What are the different types of steel billet casting processes?
There are various steel billet casting processes available, each with its own set of advantages and disadvantages. Continuous casting, ingot casting, and direct chill casting are some of the commonly used methods. Continuous casting is a widely employed technique where molten steel is poured into a water-cooled mold, resulting in a continuous strand or billet. This method offers several benefits such as high production rates, improved quality control, and reduced energy consumption. It is particularly suitable for producing large quantities of steel billets with consistent dimensions. Ingot casting, on the other hand, is an older and less frequently utilized method. It involves pouring molten steel into individual molds known as ingot molds, which solidify into solid blocks or ingots. These ingots are then reheated and shaped into billets through processes like rolling or forging. Ingot casting allows for more flexibility in terms of alloy composition and size, but it generally requires more energy and has a slower production rate compared to continuous casting. Direct chill casting is another popular process, especially for aluminum alloys. It shares similarities with continuous casting, as molten steel is poured into a water-cooled mold. However, the main difference lies in the use of a rotating mold in direct chill casting, resulting in cylindrical or rectangular billets. This method provides better control over the solidification process, leading to improved microstructure and mechanical properties. Less common steel billet casting processes include electromagnetic casting, where an electromagnetic field is employed to control the flow of molten steel, and centrifugal casting, which involves pouring molten steel into a rotating mold to create cylindrical billets. These methods are typically utilized for specialized applications and are not as widely adopted as continuous casting or ingot casting. In conclusion, the various steel billet casting processes include continuous casting, ingot casting, direct chill casting, electromagnetic casting, and centrifugal casting. Each method offers unique advantages and is suitable for different production requirements and steel grades. The choice of casting process depends on factors such as desired billet size, production volume, alloy composition, and cost considerations.
Q:Are steel billets used in the production of automotive parts?
Yes, steel billets are commonly used in the production of automotive parts.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords