• Square Steel Billet Q235 Grade Prime Quality 7# System 1
  • Square Steel Billet Q235 Grade Prime Quality 7# System 2
  • Square Steel Billet Q235 Grade Prime Quality 7# System 3
  • Square Steel Billet Q235 Grade Prime Quality 7# System 4
  • Square Steel Billet Q235 Grade Prime Quality 7# System 5
  • Square Steel Billet Q235 Grade Prime Quality 7# System 6
Square Steel Billet Q235 Grade Prime Quality 7#

Square Steel Billet Q235 Grade Prime Quality 7#

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
2000 m.t
Supply Capability:
50000 m.t/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description of Square Steel Billet Q235 Grade Prime Quality 7#

M. S. Billets are used for rolling of TMT Re-Bars of Fe415 and Fe500 Grade and various other structural steel products. 
CRS Billets are used for rolling of CRS TMT Re-Bars. 
Special Alloy Billets are used for rolling of any special grade TMT Re-Bars like Earthquake resistant TMT Re-Bars and for special grade structural steel products.

Square Steel Billet Q235 Grade Prime Quality 7#

Main Feature Square Steel Billet Q235 Grade Prime Quality 7#

Raw elements(C,Fe,Ni,Mn,Cr,Cu.)---Smelted ingots by AOD finery---hot rolled into black suface---pickling in acid liquid---cold drawn----polished by automatically machine---  cutting into pieces---checking quanlity


Applications of Square Steel Billet Q235 Grade Prime Quality 7#

Widely Used in the areas such as Stainless Steel Fasteners, Chains, Kitchen and Sanitary wares, Furniture handles, Handrails, Electroplating and Electrolyzing pendants, Foods, Electron, Petroleum, Construction and Decoration, etc. Products have a high strength after cold-working. Electronic products parts, Medical appliance, Springs, Bus Inside and Outside packaging and building, Street Lamp Posts, etc. Decoration materials and Outdoor Publicity Billboard. Used for the products which have the Anti-Stress Corrosion requirement. Electron Products, Table-wares, Bolts, Nuts, Screen Meshes, Cumbustors and so on.

Square Steel Billet Q235 Grade Prime Quality 7#


Specifications of Square Steel Billet Q235 Grade Prime Quality 7#

StandardC(%)Mn(%)S(%)P(%)Si(%)
Q195≤0.12≤0.50≤0.040≤0.035≤0.30
Q235≤0.20≤1.40≤0.045 ≤0.045≤0.35 
Q275≤0.22≤1.50≤0.045≤0.045≤0.35
20MnSi0.17-0.251.2-1.6≤ 0.050≤ 0.0500.40-0.80
3SP0.14-0.220.40-0.85≤ 0.050≤ 0.0400.05-0.15
5SP0.28-0.370.50-1.00≤ 0.050≤ 0.0400.15-0.30
 

Square Steel Billet Q235 Grade Prime Quality 7#

FAQ of Square Steel Billet Q235 Grade Prime Quality 7#

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.


Q:Can steel billets be used in the production of agricultural equipment?
Yes, steel billets can be used in the production of agricultural equipment. Steel billets are versatile and strong, making them suitable for manufacturing various components of agricultural machinery such as plows, harvesters, and tractors. The use of steel billets ensures durability, reliability, and resistance to corrosion, making them a preferred material choice in the agricultural industry.
Q:What are the different types of steel billet shearing techniques?
There are several types of steel billet shearing techniques, including guillotine shearing, rotary shearing, and flying shear.
Q:What is the role of steel billets in the construction of railway stations?
Steel billets are essential in constructing railway stations, serving as semi-finished steel products that are typically rectangular or square in shape. They function as raw materials for various construction purposes. Within the realm of railway stations, steel billets are primarily utilized to fabricate structural components like beams, columns, and trusses. These components provide the necessary strength and stability to support the weight of the station building, platforms, and any associated structures. A key advantage of employing steel billets in railway station construction lies in their high strength-to-weight ratio. Steel is widely recognized for its exceptional strength, making it an ideal material for supporting heavy loads. By incorporating steel billets, engineers can design and construct railway stations capable of enduring the constant traffic and heavy footfall characteristic of these public spaces. Furthermore, steel billets offer exceptional durability, corrosion resistance, and fire resistance, all of which are vital factors in ensuring the long-term safety and structural integrity of railway stations. These properties establish steel billets as a reliable and cost-effective choice for construction projects prioritizing safety and longevity. Moreover, steel billets can be easily shaped and fabricated into various sizes and dimensions, allowing for flexibility in design and construction. This versatility enables architects and engineers to create aesthetically appealing and functional railway station structures tailored to the specific project requirements. In summary, steel billets play a crucial role in railway station construction by providing the necessary strength, durability, and versatility required for the structural components supporting these vital transportation hubs. By utilizing steel billets, railway station construction projects can be completed efficiently, guaranteeing the safety and comfort of passengers for years to come.
Q:What is the role of steel billets in the production of steel bars?
Steel billets are the primary raw material used in the production of steel bars. They are semi-finished steel products that are heated and then shaped into solid bars through a process called rolling. The billets provide the necessary starting material for the production of steel bars, which are widely used in construction, manufacturing, and various other industries.
Q:What are the main challenges in the recycling of steel billets?
One of the main challenges in the recycling of steel billets is the presence of impurities and contaminants that need to be removed in order to produce high-quality recycled steel. Another challenge is the need for efficient sorting and separation techniques to properly categorize and process different types of steel billets. Additionally, the energy-intensive nature of the steel recycling process poses a challenge in terms of reducing carbon emissions and achieving sustainability goals.
Q:How do steel billets contribute to the aerospace industry?
Steel billets play a crucial role in the aerospace industry by providing the necessary raw material for manufacturing various components and structures used in aircraft. These billets, which are semi-finished metal forms, are typically produced through a process called continuous casting, where molten steel is poured into a mold to create a solid billet shape. Once the steel billets are formed, they are further processed into different aerospace components through various manufacturing techniques such as forging, machining, and heat treatment. These processes allow the steel billets to be shaped into specific forms, such as engine components, landing gear parts, structural frames, and other critical aerospace components. The use of steel billets in the aerospace industry offers several advantages. Firstly, steel is known for its high strength, durability, and excellent mechanical properties, making it a suitable material for applications where safety and reliability are of utmost importance, such as in the aerospace sector. Steel billets can withstand extreme temperatures, pressure, and stress, making them ideal for critical parts that need to perform under demanding conditions. Additionally, steel billets provide cost-effectiveness and versatility in manufacturing. Steel is widely available, making it a relatively affordable material compared to other metals used in the aerospace industry. Moreover, the ability to shape and process steel billets into various forms and sizes allows for flexibility in designing and producing aerospace components, ensuring they meet the specific requirements and standards of aircraft manufacturers. Another key contribution of steel billets to the aerospace industry is their compatibility with advanced manufacturing technologies. Steel can be easily machined, welded, and joined, enabling the integration of complex features and structures in aerospace components. This compatibility with modern manufacturing techniques allows for the production of lightweight, yet robust, parts, contributing to overall fuel efficiency and improved performance of aircraft. In conclusion, steel billets are vital to the aerospace industry as they provide the necessary raw material for manufacturing critical components and structures used in aircraft. Their high strength, durability, cost-effectiveness, and compatibility with advanced manufacturing technologies make steel billets an essential ingredient in building safe, reliable, and efficient aerospace systems.
Q:What is the standard tolerance for steel billet dimensions?
The standard tolerance for steel billet dimensions can vary depending on the specific industry and application. However, commonly accepted tolerances for steel billet dimensions typically range from +/- 0.5% to +/- 2% of the specified dimensions.
Q:What are the different types of surface defects found in steel billets?
There are several types of surface defects that can be found in steel billets. These defects can occur during the manufacturing process or due to external factors. Some of the common surface defects found in steel billets include: 1. Scale: Scale is a type of oxide layer that forms on the surface of the billet during the heating and cooling processes. It appears as a thin layer of rust-like material and can affect the quality and appearance of the steel. 2. Cracks: Cracks can occur due to improper cooling or excessive stress during the manufacturing process. These cracks can be either longitudinal or transverse and can weaken the structural integrity of the billet. 3. Pits: Pits are small depressions or cavities that can be found on the surface of the billet. They can occur due to the presence of impurities or as a result of corrosion. 4. Seam: A seam is a linear defect that can be found along the surface of the billet. It is caused by the improper joining of two sections of the billet during the manufacturing process. 5. Lamination: Lamination defects occur when there are layers or flakes of material that separate from the surface of the billet. This can be caused by improper rolling or an inadequate bonding between layers. 6. Inclusions: Inclusions are non-metallic particles or impurities that are trapped within the steel billet during the manufacturing process. These inclusions can affect the mechanical properties of the steel and reduce its overall quality. 7. Decarburization: Decarburization is a surface defect where the carbon content of the steel is reduced, leading to a softer and weaker surface layer. This can occur due to improper heating or cooling processes. It is important to detect and address these surface defects in steel billets to ensure the quality and performance of the final steel products. Various inspection methods and quality control measures are employed during the manufacturing process to minimize the occurrence of these defects.
Q:What are the different types of steel billet forging defects?
Some common types of steel billet forging defects include surface cracks, internal voids or cavities, improper grain flow, and dimensional inconsistencies. Other defects may include porosity, inclusions, and decarburization.
Q:What are the challenges in welding steel billets?
Some challenges in welding steel billets include ensuring proper joint preparation and alignment, managing heat input and distortion, selecting suitable filler materials, and controlling the formation of defects such as porosity, cracking, or incomplete fusion. Additionally, the high carbon content in certain steel billets can make them prone to hardening and cracking during the welding process, requiring specific preheating and post-weld heat treatment procedures.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords