• Square Steel Billet Q235 3SP Grade Prime Quality 7# System 1
  • Square Steel Billet Q235 3SP Grade Prime Quality 7# System 2
  • Square Steel Billet Q235 3SP Grade Prime Quality 7# System 3
  • Square Steel Billet Q235 3SP Grade Prime Quality 7# System 4
  • Square Steel Billet Q235 3SP Grade Prime Quality 7# System 5
  • Square Steel Billet Q235 3SP Grade Prime Quality 7# System 6
Square Steel Billet Q235 3SP Grade Prime Quality 7#

Square Steel Billet Q235 3SP Grade Prime Quality 7#

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
2000 m.t
Supply Capability:
50000 m.t/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description of Square Steel Billet Q235 3SP Grade Prime Quality 7#

M. S. Billets are used for rolling of TMT Re-Bars of Fe415 and Fe500 Grade and various other structural steel products. 
CRS Billets are used for rolling of CRS TMT Re-Bars. 
Special Alloy Billets are used for rolling of any special grade TMT Re-Bars like Earthquake resistant TMT Re-Bars and for special grade structural steel products.

Square Steel Billet Q235 3SP Grade Prime Quality 7#

Main Feature Square Steel Billet Q235 3SP Grade Prime Quality 7#

Raw elements(C,Fe,Ni,Mn,Cr,Cu.)---Smelted ingots by AOD finery---hot rolled into black suface---pickling in acid liquid---cold drawn----polished by automatically machine---  cutting into pieces---checking quanlity


Applications of Square Steel Billet Q235 3SP Grade Prime Quality 7#

Widely Used in the areas such as Stainless Steel Fasteners, Chains, Kitchen and Sanitary wares, Furniture handles, Handrails, Electroplating and Electrolyzing pendants, Foods, Electron, Petroleum, Construction and Decoration, etc. Products have a high strength after cold-working. Electronic products parts, Medical appliance, Springs, Bus Inside and Outside packaging and building, Street Lamp Posts, etc. Decoration materials and Outdoor Publicity Billboard. Used for the products which have the Anti-Stress Corrosion requirement. Electron Products, Table-wares, Bolts, Nuts, Screen Meshes, Cumbustors and so on.

Square Steel Billet Q235 3SP Grade Prime Quality 7#


Specifications of Square Steel Billet Q235 3SP Grade Prime Quality 7#

StandardC(%)Mn(%)S(%)P(%)Si(%)
Q195≤0.12≤0.50≤0.040≤0.035≤0.30
Q235≤0.20≤1.40≤0.045 ≤0.045≤0.35 
Q275≤0.22≤1.50≤0.045≤0.045≤0.35
20MnSi0.17-0.251.2-1.6≤ 0.050≤ 0.0500.40-0.80
3SP0.14-0.220.40-0.85≤ 0.050≤ 0.0400.05-0.15
5SP0.28-0.370.50-1.00≤ 0.050≤ 0.0400.15-0.30
 

Square Steel Billet Q235 3SP Grade Prime Quality 7#

FAQ of Square Steel Billet Q235 3SP Grade Prime Quality 7#

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.


Q:How are steel billets tested for internal defects?
Steel billets are tested for internal defects through a variety of non-destructive testing methods. One of the most common methods used is ultrasonic testing (UT). During this process, high-frequency sound waves are transmitted into the billet, and the reflections of these waves are analyzed to detect any internal defects such as cracks, voids, or inclusions. UT can provide accurate and detailed information about the size, location, and nature of the defects. Another method used is magnetic particle inspection (MPI). This technique involves magnetizing the billet and applying iron particles to its surface. If there are any internal defects, the magnetic field will cause these particles to gather around them, making them visible and detectable. Eddy current testing (ECT) is also employed to assess the internal quality of steel billets. It utilizes electromagnetic induction to create eddy currents within the material. Any changes in the electrical conductivity or magnetic permeability caused by internal defects can be detected by analyzing the variations in the induced current. Additionally, radiographic testing (RT) is utilized to inspect the internal structure of steel billets. X-rays or gamma rays are directed towards the billet, and the resulting radiographic image can reveal any internal defects such as voids, cracks, or inclusions. Other methods, such as dye penetrant testing and visual inspection, can also be used to detect superficial and near-surface defects in steel billets. These methods involve applying a liquid or dye to the surface of the billet, which will seep into any cracks or surface irregularities, making them visible under certain lighting conditions. Overall, a combination of these non-destructive testing methods is employed to ensure the quality and integrity of steel billets by effectively detecting any internal defects that could compromise their structural integrity and performance.
Q:How are steel billets used in the manufacturing of defense equipment?
Due to their strength, durability, and versatility, steel billets are crucial in the production of defense equipment. Armored vehicles, tanks, and artillery require materials that can withstand extreme conditions and offer optimal protection. Steel billets, which have a square or rectangular cross-section, are semi-finished steel products used as the raw material for various defense equipment components. These billets are melted and cast into specific shapes that meet the exact requirements of each equipment part. After casting, steel billets undergo forging, heat treatment, and machining processes to create different defense equipment components such as armor plates, gun barrels, missile casings, and vehicle frames. The high strength and impact resistance of steel billets make them ideal for these applications, ensuring the equipment can endure ballistic impacts, blast forces, and other hostile conditions encountered in combat situations. Additionally, steel billets can be easily welded, allowing for the assembly of complex structures and the integration of different components. This flexibility enables the production of customized defense equipment tailored to fulfill specific military needs. Furthermore, steel billets possess corrosion resistance, which is vital for defense equipment exposed to harsh environmental conditions like saltwater or extreme temperatures. This resistance ensures the longevity and reliability of the equipment, reducing maintenance requirements and costs. In summary, steel billets play a crucial role in the manufacturing of defense equipment as they provide the necessary strength, durability, and flexibility for effective performance in combat situations. Their usage guarantees that defense forces have access to reliable and robust equipment, enhancing their operational capabilities and safeguarding the lives of military personnel.
Q:How are steel billets marked for identification?
Steel billets are typically marked for identification using a variety of methods such as stamping, engraving, or laser marking. This allows for important information like the grade, size, and batch number to be permanently etched onto the surface of the billet, ensuring easy identification and traceability throughout the manufacturing process.
Q:How do steel billets contribute to the overall fire resistance of a structure?
Steel billets contribute to the overall fire resistance of a structure in several ways. Firstly, steel is a non-combustible material, meaning it does not burn or contribute to the spread of fire. By using steel billets in the construction of a building, the risk of fire propagation is significantly reduced. Secondly, steel has a high melting point, typically around 1370 degrees Celsius. This means that even in the presence of intense heat, steel maintains its structural integrity and does not deform easily. Steel billets, which are solid blocks of steel, provide strength and stability to the structure, ensuring that it can withstand the impact of a fire. Additionally, steel has a low thermal conductivity, meaning it does not conduct heat easily. This property helps to slow down the transfer of heat from the fire to the surrounding areas of the structure. By acting as a barrier, steel billets prevent the temperature from rising rapidly, giving occupants more time to evacuate and firefighters more time to extinguish the fire. Moreover, steel billets are often used in the construction of fire-resistant walls or barriers within a structure. These walls are designed to compartmentalize the building, limiting the spread of fire and smoke to specific areas. By incorporating steel billets into these fire-resistant walls, the construction becomes more robust and capable of withstanding the extreme conditions of a fire. In summary, steel billets contribute to the overall fire resistance of a structure through their non-combustible nature, high melting point, low thermal conductivity, and ability to reinforce fire-resistant walls. By utilizing steel billets in the construction process, buildings can be made more resilient to fire incidents, ensuring the safety of occupants and minimizing the damage caused by fires.
Q:What are the safety precautions when working with steel billets?
To maintain a secure working environment and prevent accidents when dealing with steel billets, it is crucial to adhere to specific safety measures. Here are some essential precautions to bear in mind: 1. Personal Protective Equipment (PPE): Ensure that you wear the suitable PPE at all times, including steel-toed boots, safety goggles, gloves, and a hard hat. These items will shield you from potential hazards like falling objects, sparks, and sharp edges. 2. Training and Education: It is vital to provide comprehensive training and education to all workers regarding the handling and usage of steel billets. This encompasses understanding safe operating procedures, material handling techniques, and emergency response protocols. 3. Proper Handling and Storage: Mishandling steel billets can result in injuries due to their weight. Employ appropriate lifting techniques and equipment to prevent strains or sprains. Moreover, store the billets in designated areas, ensuring they are properly stacked and secured to avert accidents caused by falling objects. 4. Fire Safety Precautions: Moving or manipulating steel billets can generate sparks that could ignite flammable materials. Keep the work area clear of debris and flammable substances, and ensure that fire extinguishers are easily accessible. 5. Machine Safety: If utilizing machinery or equipment to handle steel billets, make certain that they undergo regular maintenance, have appropriate safeguards, and are operated by trained individuals. Adhere to all operational instructions and conduct routine safety checks to avoid accidents. 6. Sufficient Ventilation: Working with steel billets may generate fumes and dust, particularly during cutting or welding processes. Implement proper ventilation systems to eliminate these substances from the work area, minimizing the risk of respiratory issues. 7. Emergency Preparedness: Establish a well-defined emergency plan that outlines evacuation procedures, first aid facilities, and communication methods. Train all workers on emergency protocols and ensure they are aware of the locations of safety equipment and emergency exits. Always prioritize safety when working with steel billets. Adhering to these precautions will help minimize accident risks and foster a safe working environment for everyone involved.
Q:How are steel billets used in the production of railway components?
Steel billets are used in the production of railway components by being heated and molded into specific shapes, such as rails, sleepers, and fasteners. These billets serve as the raw material that is further processed and refined to create durable and strong components that can withstand the heavy loads and stresses of railway operations.
Q:Can steel billets be used for making architectural structures?
Yes, steel billets can be used for making architectural structures. Steel billets are commonly used as a raw material in the construction industry for various applications including the fabrication of beams, columns, and other structural components. The high strength and durability of steel make it an ideal choice for architectural structures, providing stability and structural integrity to buildings.
Q:What are the different types of steel billet inspection techniques?
There are several types of steel billet inspection techniques, including visual inspection, ultrasonic testing, magnetic particle testing, dye penetrant testing, and eddy current testing.
Q:Can steel billets be used in the production of oil and gas equipment?
Yes, steel billets can be used in the production of oil and gas equipment. Steel billets are semi-finished metal products that are commonly used as raw materials for the manufacturing of various industrial products, including oil and gas equipment. They can be further processed through hot rolling or forging to produce different components such as pipes, valves, flanges, and fittings that are essential for the oil and gas industry. The high strength and durability of steel make it an ideal material for withstanding the harsh conditions and high pressures encountered in oil and gas operations. Additionally, steel billets can be customized to meet specific requirements such as corrosion resistance, heat resistance, and mechanical properties, ensuring the suitability of the final product for its intended application in the oil and gas sector.
Q:What are the physical properties of steel billets?
Steel billets possess various physical properties that render them highly suitable for a multitude of industrial applications. Primarily, they exhibit a remarkable strength-to-weight ratio, ensuring impeccable structural integrity and the ability to endure heavy loads without deformation or breakage. Another significant physical attribute of steel billets lies in their hardness. Steel is renowned for its hardness, which grants it resistance against wear and tear. Consequently, steel billets prove to be ideal for sectors where durability and long-term performance are of utmost importance, such as construction, automotive, and machinery industries. Furthermore, steel billets boast a lofty melting point, enabling them to withstand extreme heat without deformation or liquefaction. This trait proves indispensable in applications involving high temperatures, such as the manufacturing of tools, machinery, and equipment within the aerospace and energy sectors. Additionally, steel billets exhibit exceptional ductility and malleability, facilitating their effortless manipulation into diverse structures and products. This adaptability makes steel billets highly versatile and amenable to various manufacturing processes, including rolling, forging, and extrusion. Moreover, steel billets demonstrate commendable electrical and thermal conductivity, rendering them suitable for applications that necessitate efficient heat transfer and electrical conduction. These properties hold particular value in the production of electrical wiring, power transmission lines, and heat transfer equipment. In conclusion, steel billets possess key physical properties encompassing high strength, hardness, melting point, ductility, malleability, and conductivity. These attributes enable their utilization across a wide range of industries and applications, where their exceptional performance and reliability are indispensable.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords