• Square Shape Hot Rolled Mild Steel Billet 60mm-150mm System 1
  • Square Shape Hot Rolled Mild Steel Billet 60mm-150mm System 2
  • Square Shape Hot Rolled Mild Steel Billet 60mm-150mm System 3
Square Shape Hot Rolled Mild Steel Billet 60mm-150mm

Square Shape Hot Rolled Mild Steel Billet 60mm-150mm

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
1000 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 Product Description:

OKorder is offering Square Shape Hot Rolled Mild Steel Billet 60mm-150mm at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to African, South American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Square Shape Hot Rolled Mild Steel Billet 60mm-150mmare ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Square Shape Hot Rolled Mild Steel Billet 60mm-150mm are durable, strong, and wide variety of sizes.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: Q195/Q235/Q275/20MnSi

Certificates: ISO, SGS, BV

size:60*60/90*90/100*100/120*120/150*150

Length: 6m/12m,

Packaging: Export packing, nude packing, bundled

Standard

C(%)

Mn(%)

S(%)

P(%)

Si(%)

Q195

≤0.12

≤0.50

≤0.040

≤0.035

≤0.30

Q235

≤0.20

≤1.40

≤0.045 

≤0.045

≤0.35 

Q275

≤0.22

≤1.50

≤0.045

≤0.045

≤0.35

20MnSi

0.17-0.25

1.2-1.6

≤ 0.050

≤ 0.050

0.40-0.80

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will arrange production. The normal sizes with the normal grade can be produced within one month. The specific shipping date is dependent upon international and government factors, the delivery to international main port about 45-60days.

 

Images:

Q:What is the difference between continuous casting billet and cast billet?
Mainly to see the process, general casting efficiency is low, but the quality is acceptable, with low level (open casting billet) has great advantages in surface quality;
Q:What is the role of steel billets in the manufacturing of construction machinery?
The exceptional strength and durability of steel billets make them crucial in the production of construction machinery. These semi-finished products, created from molten steel, can be shaped into various forms like bars, rods, or sheets, depending on the specific machinery being manufactured. The ability of steel billets to withstand heavy loads and extreme conditions is one of the primary reasons for their use in the construction machinery industry. Machinery like excavators, bulldozers, cranes, and loaders experience intense stress and pressure during operation. With their high-quality steel composition, steel billets provide the necessary structural integrity and resistance to deformation, ensuring the machinery can handle demanding tasks without compromising safety or performance. Additionally, steel billets offer excellent weldability, an essential characteristic in the manufacturing process of construction machinery. Welding is often required to join different components together, and the use of steel billets guarantees strong and reliable welds, contributing to the overall stability and longevity of the machinery. Furthermore, steel billets can be easily machined and formed into complex shapes, allowing for the production of intricate parts and components needed for construction machinery. This versatility empowers manufacturers to design and fabricate machinery with precise specifications, enhancing their functionality and efficiency on the job site. Moreover, steel billets are known for their resistance to corrosion and rust, making them ideal for construction machinery exposed to harsh environmental conditions like moisture, chemicals, and abrasive materials. This resistance ensures the longevity of the machinery, reducing maintenance costs and downtime. In conclusion, the strength, weldability, machinability, and resistance to corrosion of steel billets make them indispensable in the manufacturing of construction machinery. By incorporating steel billets into the production process, manufacturers can create robust and reliable machinery that can withstand heavy loads, extreme conditions, and perform efficiently in the construction industry.
Q:What is the role of steel billets in the manufacturing of tools and dies?
Steel billets play a crucial role in the manufacturing of tools and dies as they serve as the raw material for shaping and forming these components. Billets are heated, forged, and machined to create the desired shape and strength required for tools and dies. The high-quality, durable nature of steel billets ensures that the resulting tools and dies possess the necessary hardness, toughness, and wear resistance to withstand the demanding conditions of their applications.
Q:How are steel billets used in the manufacturing of agricultural equipment?
Steel billets are used in the manufacturing of agricultural equipment by being forged or rolled into various components such as frames, axles, and blades. These billets provide the necessary strength and durability required to withstand the demanding conditions and heavy-duty applications in farming and agriculture.
Q:What is the typical composition of a steel billet?
The typical composition of a steel billet can vary depending on the specific grade and intended application. However, in general, a steel billet is primarily composed of iron, carbon, and other alloying elements. Iron is the main component of steel, typically making up around 98% of its composition. It provides the structural strength and durability of the material. Carbon is the second most important element, typically ranging from 0.02% to 2.1%. It plays a crucial role in determining the hardness and strength of the steel. Apart from iron and carbon, steel billets often contain various alloying elements to enhance specific properties. These alloying elements may include manganese, silicon, nickel, chromium, molybdenum, vanadium, and others. Each element contributes to different characteristics such as corrosion resistance, heat resistance, toughness, or machinability. Additionally, steel billets are often produced through processes like continuous casting or hot rolling, which can introduce small amounts of impurities. These impurities can include sulfur, phosphorus, and oxygen, which are typically kept to very low levels to maintain the desired quality of the steel. Overall, the typical composition of a steel billet encompasses a combination of iron, carbon, alloying elements, and minor impurities, which are carefully controlled to achieve the desired mechanical properties and performance for a wide range of applications, such as construction, automotive, aerospace, and manufacturing industries.
Q:What is the role of steel billets in the construction of stadiums and arenas?
Steel billets play a crucial role in the construction of stadiums and arenas as they are the primary raw material used to manufacture structural steel components. These billets are heated and shaped into various forms, such as beams, columns, and trusses, which provide the necessary support and framework for the overall structure. The high strength and durability of steel make it an ideal material to withstand the heavy loads and forces experienced in these large-scale facilities. Additionally, steel billets can be easily fabricated and assembled on-site, ensuring efficient construction and enabling the creation of complex designs and architectural features.
Q:What is the role of steel billets in the production of sheet metal?
Steel billets play a crucial role in the production of sheet metal as they are the primary raw material used to create thin, flat sheets of metal. These billets are heated, rolled, and shaped through a series of processes to transform them into sheet metal. The quality and composition of the billets directly impact the strength, durability, and overall characteristics of the final sheet metal product.
Q:What are the different types of mechanical property testing methods for steel billets?
There are several different types of mechanical property testing methods used to evaluate the quality and strength of steel billets. These methods include: 1. Tensile Testing: Tensile testing is one of the most commonly used methods to determine the mechanical properties of steel billets. It involves applying a tensile force to a small sample of the billet until it fractures. This test measures the strength, yield strength, elongation, and reduction in area of the material. 2. Impact Testing: Impact testing is used to assess the toughness and resistance to fracture of steel billets. It involves striking a notched specimen with a pendulum or hammer and measuring the energy absorbed during fracture. The results provide information about the material's ability to withstand sudden shocks or dynamic loads. 3. Hardness Testing: Hardness testing determines the resistance of the steel billet to indentation or scratching. Various methods can be employed, such as Rockwell, Brinell, or Vickers hardness testing. The results are often correlated with other mechanical properties, such as strength and ductility. 4. Charpy Testing: Charpy testing is a type of impact test specifically designed to evaluate the notch toughness of steel billets. It involves striking a notched specimen with a pendulum, and the energy absorbed during fracture is measured. This test is particularly useful in assessing the material's behavior under low-temperature conditions. 5. Bend Testing: Bend testing is performed to assess the ductility and flexibility of steel billets. It involves bending a sample around a specified radius until it fractures or shows signs of cracking. This test provides information about the material's ability to withstand deformation without breaking. 6. Fatigue Testing: Fatigue testing is used to evaluate the steel billet's resistance to cyclic loading or repeated stress. It involves subjecting a sample to a varying load, and the number of cycles required for failure is recorded. This test helps determine the material's durability and its ability to withstand long-term stress. These mechanical property testing methods play a crucial role in ensuring the quality and reliability of steel billets for various applications. By evaluating the strength, toughness, hardness, and other mechanical properties, manufacturers and engineers can make informed decisions about the suitability of the material for specific uses.
Q:How are steel billets used in the manufacturing of railway wagons?
Steel billets are used in the manufacturing of railway wagons as they serve as the raw material for various components such as frames, side panels, and undercarriages. These billets are first heated and then shaped into the desired form through processes like rolling or forging. The resulting components are strong, durable, and able to withstand the rigorous demands of railway transportation, ensuring the safety and reliability of the wagons.
Q:How are steel billets tested for strength?
Steel billets are tested for strength using various methods to ensure their quality and suitability for different applications. One of the commonly used tests is the tensile strength test. In this test, a sample of the steel billet is subjected to a controlled pulling force until it breaks. The maximum force applied during this test determines the tensile strength of the billet. Another important test is the hardness test, which measures the resistance of the steel billet to indentation. This test is performed using a hardness tester, which applies a known force onto the surface of the billet and measures the depth of the resulting indentation. The hardness value obtained from this test helps determine the billet's strength and ability to withstand wear and tear. In addition to these tests, steel billets may also undergo impact testing, where a pendulum is swung to strike the billet, measuring the amount of energy absorbed during fracture. This test helps assess the billet's toughness and ability to withstand sudden shocks or impacts. Furthermore, ultrasonic testing is often conducted to detect any internal defects or inconsistencies within the steel billet. This non-destructive testing method uses high-frequency sound waves to identify any hidden flaws, such as cracks, voids, or inclusions, which could weaken the billet and compromise its strength. Overall, a combination of these tests and other quality control measures ensures that steel billets are thoroughly tested for their strength and suitability for various industrial applications, such as construction, automotive, and manufacturing.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords