• Steel Bloom Manufactured by Big Blast Furnace System 1
  • Steel Bloom Manufactured by Big Blast Furnace System 2
Steel Bloom Manufactured by Big Blast Furnace

Steel Bloom Manufactured by Big Blast Furnace

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Steel Bloom Manufactured by Big Blast Furnace

 

1.Structure of  Steel Bloom Manufactured by Big Blast Furnace

 

Steel Bloom Manufactured by Big Blast Furnace is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity, etc Several, mainly related to shape of rolled products. Simple rolled section steel, choose cross section of square billet or rectangular billet. rolling The sector products such as flat steel, Angle steel, select the rectangular billet or slab. Had better profiled billet when production beams, channels, and in rolling process Lines and improve the yield. The raw material of round billet is the production of seamless tube. 


2.Main Features of  Steel Bloom Manufactured by Big Blast Furnace

Steel Bloom Manufactured by Big Blast Furnace section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Billet section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel billet by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.

 

3.  Steel Bloom Manufactured by Big Blast Furnace Images

 

 

 

Steel Bloom Manufactured by Big Blast Furnace

Steel Bloom Manufactured by Big Blast Furnace

 

 

 

 

4.  Steel Bloom Manufactured by Big Blast FurnaceSpecification

 Steel Billet Manufactured by Blast Furnace  rolled steel, after processing can be used for mechanical parts, forging parts, processing all kinds of steel, steel Q345B channel steel, wire rod is the role of the billet. Steel billet is used in the production of semi-finished products, generally cannot be used directly for the society. Steel billets and steel are strictly divided into standard, cannot decide to whether the business enterprise of the final product, and according to unified standards to perform the whole society. Typically, billet and the steel is relatively easy to distinguish, but for some steel billet, and have the same specification and same steel purposes (such as rolling tube billet), whether can be used for other industries, whether through steel processing process, whether through a finished product rolling mill processing to distinguish

Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: billet: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm Surface tilt: no more than billet section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P

 

5.FAQ of  Steel Bloom Manufactured by Big Blast Furnace

 

 

①How about your company?

A world class manufacturer & supplier of castings forging in carbon steel and alloy steel,is one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.

 

②What is the advantage of the continue Casting steel Bloom comparing to the die casting steel Bloom?

Compared with die casting, continuous casting has the advantages of: 1. To simplify the Steel Bloom The production process 2. Improve the metal yield 3. Improve the quality of the Bloom 4. Reduces the steel worker's labor intensity 5. Save energy and reduce consumption

Steel Bloom is produced by the method of through three processes: It is through the steelmaking system of continuous casting equipment, directly by the molten steel pouring into Bloom; The second is the steelmaking system in the production of steel ingot casting Bloom through system of steel rolling rolling equipment or processing of steel semi-finished products; Three is the steelmaking system production of steel ingot by forging the semi-finished product processing equipment.

 

 

③How about the Q235 Grades?

 

Q235:A、B、C、D(GB700-88)

Q235A:C0.14~0.22% Mn0.30~0.65Si≤0.30S≤0.050P≤0.045

Q235B:C0.12~0.20% Mn0.30~0.670Si≤0.30S≤0.045P≤0.045

Q235C:C≤0.18% Mn0.35~0.80Si≤0.30S≤0.040P≤0.040

Q235D:C≤0.17% Mn0.35~0.80Si≤0.35S≤0.040P≤0.035

 

 

Q:How are steel billets used in the production of pump parts?
Steel billets are used in the production of pump parts by being heated, shaped, and then machined into specific components such as impellers, casings, or shafts. These billets, which are semi-finished products made of solid steel, provide the raw material needed for manufacturing durable and high-performance pump parts. The process involves melting the steel billets in a furnace, pouring the molten metal into molds, and allowing it to solidify into the desired shape. After cooling, the billets are further processed through machining operations like cutting, drilling, and grinding to achieve the final dimensions and surface finish required for pump components.
Q:What are the challenges faced in the distribution and supply chain of steel billets?
Some challenges faced in the distribution and supply chain of steel billets include transportation and logistics issues, such as the need for specialized equipment and efficient handling processes due to the heavyweight and bulky nature of steel billets. Additionally, ensuring timely delivery and managing inventory levels can be challenging due to various factors like unpredictable demand fluctuations and production delays. Quality control and inspection of steel billets during transit and storage is also crucial to prevent damage or deterioration. Lastly, coordinating with multiple stakeholders, including suppliers, manufacturers, distributors, and customers, requires effective communication and collaboration to maintain a smooth and reliable supply chain.
Q:How are steel billets used in the production of flanges?
Flanges, which are vital components used to connect pipes, valves, and other equipment in industries such as oil and gas, petrochemicals, and power plants, require steel billets as their essential raw material. To manufacture flanges, steel billets are initially heated to a high temperature, making them malleable and easy to shape. Then, they go through a series of rolling mills where hot rolling or forging processes take place. These processes help shape the steel billets into the desired dimensions of the flanges, including outer diameter, inner diameter, and thickness. During the rolling or forging process, immense pressure is applied to the steel billets, aligning the steel grains and enhancing the structural integrity of the flanges. This ensures that the flanges can endure high pressures, temperature fluctuations, and other challenging operating conditions throughout their service life. Once the initial shaping is accomplished, additional processing is carried out to refine the surface finish of the flanges. This may involve machining, grinding, or polishing, depending on the specific design requirements of the flanges. These additional steps are essential to achieve a smooth and precise surface, ensuring proper sealing and connection when the flanges are installed in a piping system. After the surface finish is refined, the flanges undergo various quality control checks, including dimensional inspections, mechanical testing, and non-destructive testing. These tests guarantee that the flanges meet industry standards and specifications, assuring their reliability and performance. In conclusion, steel billets play a vital role in the production of flanges as they provide the necessary raw material for shaping and forming these essential components. The combination of high-temperature processing, rolling or forging, and subsequent finishing processes results in the creation of strong, durable flanges capable of withstanding demanding conditions in industrial applications.
Q:What are the main challenges in the storage of steel billets?
The main challenges in the storage of steel billets include the need for proper space allocation, adequate handling equipment, protection against corrosion and rust, and maintaining optimal temperature and humidity levels. Additionally, ensuring proper inventory management and efficient transportation of the billets can also be challenging.
Q:How are steel billets used in the manufacturing of pressure vessels?
Pressure vessels require steel billets as a necessary part of their manufacturing process. These metal products are in a semi-finished state and are typically made through casting or extrusion. The billets are molded into a solid square or rectangular shape to ensure consistent and uniform material for further processing. To initiate the manufacturing process, the steel billets are heated to a specific temperature, making them more malleable and easier to handle. Once heated, they are placed into a forging machine, where intense pressure and shaping take place. This forging process effectively eliminates any defects or inconsistencies in the billet's structure, resulting in a stronger and more durable material. After the forging stage, the steel billets undergo additional processing using different techniques like rolling or machining. These techniques are employed to achieve the desired dimensions and shape required for pressure vessel fabrication. By refining the billet's surface finish and improving its mechanical properties, these techniques enhance the overall quality of the billet. Once the billets have been shaped and processed, they are cut into smaller sections that serve as the foundation for constructing pressure vessels. These sections are welded together to form the vessel's shell, ensuring a secure and tight seal to contain high-pressure fluids or gases. The use of steel billets in pressure vessel manufacturing is critical due to their superior strength, durability, and resistance to high-pressure environments. The uniformity and consistency of the billets provide a reliable material for fabricating vessels that can endure extreme conditions, guaranteeing the safety and integrity of the contents within. In conclusion, steel billets play a crucial role in the manufacturing of pressure vessels by providing the core components for constructing the vessel's shell. Through a series of heating, forging, and processing techniques, the billets are transformed into robust and enduring sections that are then welded together to form the final vessel. The utilization of steel billets ensures the structural integrity and dependability of pressure vessels, making them suitable for a wide range of industrial applications.
Q:What are the different surface finishes available for stainless steel billets?
Stainless steel billets offer a range of surface finishes to meet diverse aesthetic and functional needs. Here are some commonly used finishes: 1. The mill finish is the standard produced by the steel mill during manufacturing. It presents a dull appearance with visible oxidation marks, and its smoothness may vary. 2. Hot rolling involves heating the billet and rolling it through rollers to achieve a rougher surface with visible scale and an orange peel texture. 3. Cold rolling reduces the thickness of the billet and enhances surface smoothness, resulting in a slightly reflective finish suitable for applications requiring smooth surfaces. 4. The brushed finish, also known as satin finish, entails mechanically brushing the billet with abrasive materials to create a consistent linear pattern and a matte appearance. 5. Polishing the billet with abrasives produces a smooth and reflective surface, with varying levels of gloss, ranging from low-gloss satin to mirror-like high reflectivity. 6. Bead blasting involves bombarding the billet with tiny glass or ceramic beads at high pressure to create a uniform matte texture, often used for architectural and decorative purposes. 7. Electropolishing achieves a smooth and reflective surface with enhanced corrosion resistance by immersing the billet in an electrolyte bath and applying an electric current to remove a thin layer of material. These examples illustrate the variety of surface finishes available for stainless steel billets. Each finish possesses unique characteristics and is selected based on specific requirements, such as aesthetics, corrosion resistance, and ease of cleaning.
Q:What are the different surface finishing techniques used for steel billets?
There are several surface finishing techniques that are commonly used for steel billets. These techniques are employed to enhance the appearance, improve corrosion resistance, and provide a protective coating to the steel billets. Some of the different surface finishing techniques used for steel billets are: 1. Hot Rolling: This technique involves passing the steel billets through a series of hot rollers, which not only shapes the billets but also creates a smooth surface finish. Hot rolling is commonly used to produce steel plates, sheets, or structural shapes. 2. Cold Rolling: Cold rolling is similar to hot rolling, but it is performed at room temperature. This technique helps to achieve a smoother surface finish, increased dimensional accuracy, and improved mechanical properties of the steel billets. 3. Shot Blasting: Shot blasting is a process where steel billets are bombarded with small metallic or non-metallic particles at high velocity. This technique helps to remove scale, rust, and other contaminants from the billet's surface, resulting in a clean and uniform appearance. 4. Pickling: Pickling involves immersing the steel billets in an acid solution to remove oxides, scale, and rust from the surface. This technique helps to achieve a clean and smooth surface finish, ready for further processing or coating. 5. Galvanizing: Galvanizing is a popular surface finishing technique that involves coating the steel billets with a layer of zinc. This coating provides excellent corrosion resistance and protects the steel from environmental factors. Galvanizing can be done through hot-dip galvanizing, electro-galvanizing, or mechanical galvanizing methods. 6. Painting: Painting is often used as a surface finishing technique for steel billets. It involves applying a layer of paint or protective coating to the surface, which not only enhances the appearance but also provides protection against corrosion and weathering. 7. Passivation: Passivation is a chemical process used to remove free iron or iron oxides from the surface of steel billets. This process helps to improve the corrosion resistance of the steel and leaves a clean and passive surface. 8. Polishing: Polishing involves using abrasive materials or compounds to smoothen the surface of the steel billets. This technique is commonly used to achieve a high gloss or mirror-like finish, enhancing the aesthetic appeal of the steel. Each of these surface finishing techniques offers its own advantages and is chosen based on the specific requirements of the steel billets, such as appearance, corrosion resistance, and functionality.
Q:What are the different types of steel used for manufacturing billets?
There are several different types of steel that are commonly used for manufacturing billets, each with its own unique properties and applications. Some of the most common types of steel used for this purpose include: 1. Mild Steel: This is one of the most widely used types of steel for manufacturing billets. It has a low carbon content and is known for its strength and ductility. Mild steel is often used for general purpose applications where high strength is not required. 2. Carbon Steel: This type of steel contains higher levels of carbon compared to mild steel. It offers improved hardness and strength, making it suitable for applications that require greater resistance to wear and tear, such as tools and machinery components. 3. Alloy Steel: Alloy steel is made by adding various alloying elements, such as manganese, nickel, chromium, or molybdenum, to the base iron. This results in a steel with enhanced properties such as increased strength, durability, and corrosion resistance. Alloy steel billets are commonly used in the automotive, aerospace, and construction industries. 4. Stainless Steel: Stainless steel is a steel alloy that contains a minimum of 10.5% chromium, which provides excellent resistance to corrosion and staining. This makes it ideal for applications that require high levels of hygiene, such as food processing equipment and medical devices. 5. Tool Steel: Tool steel is a type of high-carbon steel that is specifically designed to be used in the production of tools, dies, and molds. It is known for its hardness, wear resistance, and ability to retain its shape at high temperatures. 6. High-Speed Steel: High-speed steel is a type of tool steel that is specifically designed to withstand high temperatures without losing its hardness. It is commonly used for cutting tools, such as drills and milling cutters. These are just a few examples of the different types of steel used for manufacturing billets. The choice of steel will depend on the specific requirements of the application, such as strength, durability, corrosion resistance, and temperature resistance.
Q:How are steel billets different from steel ingots?
Steel billets and steel ingots are both semi-finished steel products, but they differ in terms of their shape, size, and manufacturing process. Firstly, the shape of steel billets and steel ingots is different. Steel billets are typically square or rectangular in shape, with specific dimensions that are determined by the production requirements. On the other hand, steel ingots have a more irregular shape, often resembling a large block or loaf. The shape of the ingot is determined by the mold in which it is cast. Secondly, the size of steel billets and steel ingots also varies. Steel billets are generally smaller in size compared to ingots. Billets are typically produced in smaller cross-sectional areas and lengths, making them more suitable for further processing. Steel ingots, on the other hand, are larger and heavier, as they are cast in molds that can accommodate a greater volume of molten steel. Lastly, the manufacturing process for steel billets and steel ingots differs. Steel billets are typically produced through a process called continuous casting, where molten steel is poured into a water-cooled mold to solidify into the desired shape. This process allows for a more controlled and efficient production of billets. On the other hand, steel ingots are generally produced through casting in open or closed molds, where the molten steel is poured and left to solidify. This process is often slower and less precise compared to continuous casting. In summary, steel billets and steel ingots differ in terms of their shape, size, and manufacturing process. Billets are square or rectangular in shape, smaller in size, and produced through continuous casting, while ingots have an irregular shape, larger in size, and produced through casting in molds. Both products serve as essential raw materials for the production of various steel products.
Q:What are the different types of surface defect detection equipment for steel billets?
There are several types of surface defect detection equipment for steel billets, including ultrasonic testing (UT), magnetic particle inspection (MPI), visual inspection, eddy current testing, and automated optical inspection (AOI). Each of these methods has its own advantages and limitations when it comes to detecting and evaluating surface defects in steel billets.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords