• Hot Rolled Steel Billet Make in China for Sale System 1
  • Hot Rolled Steel Billet Make in China for Sale System 2
  • Hot Rolled Steel Billet Make in China for Sale System 3
Hot Rolled Steel Billet Make in China for Sale

Hot Rolled Steel Billet Make in China for Sale

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering Hot Rolled Steel Billet Make in China for Sale with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Hot Rolled Steel Billet Make in China for Sale are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Hot Rolled Steel Billet Make in China for Sale are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Packaging & Delivery:

Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.

Each bundle weight: 2-3MT, or as required

Payment term: TT or L/C

Delivery Detail: within 45 days after received advanced payment or LC.

Label: to be specified by customer, generally, each bundle has 1-2 labels

Trade terms: FOB, CFR, CIF

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

 

Images:

 

 

 

Q:How are steel billets used in the production of valves?
Valves rely on steel billets as their fundamental building blocks, as they are the raw materials used to manufacture valve bodies. Valve bodies, which are the primary structural components of valves, provide the necessary strength and durability to withstand the demanding conditions of high pressures and temperatures in different applications. To create valve bodies, steel billets undergo a series of manufacturing processes. Initially, the billets are heated and then passed through rollers to shape them into the desired forms, typically cylindrical or rectangular. This process, referred to as hot rolling, enhances the mechanical properties of the steel, making it more suitable for valve applications. After hot rolling, the steel billets undergo further refinement through forging or machining operations to achieve the desired shape and dimensions. Forging involves applying compressive forces to the heated billets, reshaping them into the final form of the valve body. Conversely, machining entails removing excess material through cutting, drilling, and shaping to attain the desired dimensions and surface finish. Once the valve bodies are formed, additional processes such as drilling, threading, and finishing are conducted to create the necessary openings, connections, and surface smoothness required for the valve to function properly. These processes may involve the use of specialized machinery and tools to ensure precise and accurate dimensions. In summary, steel billets play a critical role in valve production as they serve as the starting point for creating valve bodies. With the combination of steel properties and various manufacturing processes, high-quality valves can be produced to effectively regulate fluid or gas flow in diverse industrial applications.
Q:What are the potential applications of steel billets in the oil and gas sector?
Due to their excellent mechanical properties and durability, steel billets offer a wide range of potential applications in the oil and gas sector. Here are several examples: 1. Drill pipes and casings: Manufacturing drill pipes and casings, which are vital components in the drilling process, can be achieved using steel billets. These pipes and casings must endure high pressure and extreme temperatures, necessitating the strength and toughness provided by steel billets. 2. Pipelines: Steel billets can be utilized to create seamless or welded steel pipes for oil and gas pipelines. These pipes are responsible for transporting oil, gas, and other petroleum products across long distances. Steel billets ensure the durability and integrity of the pipelines, withstanding high pressure, corrosion, and impact. 3. Offshore structures: Steel billets are also essential in constructing offshore platforms, drilling rigs, and other structures used in extracting and producing oil and gas from offshore reserves. These structures are exposed to harsh marine conditions, including saltwater, wind, and waves. Steel billets provide the necessary strength and corrosion resistance to withstand these challenging environments. 4. Pressure vessels and storage tanks: Steel billets can be employed in manufacturing pressure vessels and storage tanks used for storing and transporting oil, gas, and various chemicals. These vessels and tanks must withstand high pressure and temperature variations without compromising safety. Steel billets offer the required strength and resistance to corrosion and leakage. 5. Equipment components: Steel billets are also used in fabricating various components and equipment used in the oil and gas sector, such as valves, flanges, fittings, and connectors. These components are crucial for the operation and maintenance of oil and gas facilities, and steel billets ensure their reliability and performance. In conclusion, the potential applications of steel billets in the oil and gas sector are extensive and diverse, covering various stages of exploration, production, transportation, and storage. Their exceptional strength, durability, and resistance to extreme conditions make them an ideal material choice for critical applications in this industry.
Q:What is the role of steel billets in the manufacturing of automotive body panels?
Steel billets play a crucial role in the manufacturing of automotive body panels as they are the starting material for the production process. These billets are heated, shaped, and formed into various body panel components, such as doors, hoods, and fenders. Their high strength and durability make them ideal for providing structural integrity and protection in automotive applications. Additionally, the malleability of steel billets allows for intricate designs and shaping, ensuring precise and smooth body panel surfaces.
Q:What are the different surface finishes available for steel billets?
Steel billets can be finished in several different ways, depending on their specific requirements and intended use. Some commonly used surface finishes include: 1. Hot Rolled: Steel billets are rolled at high temperatures, resulting in a rough and scaled surface. This finish is suitable for applications where aesthetics are not a priority. 2. Cold Rolled: Steel billets are rolled at room temperature to achieve a smoother and more polished surface. Cold rolling improves dimensional accuracy and surface quality. 3. Pickled and Oiled: Scale and rust are removed from the steel billets using an acid solution, followed by an oil coating to prevent corrosion. This finish provides a clean and rust-free surface, commonly used in the automotive and construction industries. 4. Galvanized: A zinc coating is applied to the steel billets to protect them from corrosion. This finish offers excellent corrosion resistance, making it suitable for outdoor applications like fencing, roofing, and structural components. 5. Passivated: Free iron is removed from the steel surface through a chemical process, enhancing its corrosion resistance. This finish is often used in the production of stainless steel billets to improve their resistance to rust and other forms of corrosion. 6. Shot Blasting: Small abrasive particles are projected onto the steel billets' surface to remove scale, rust, and impurities. This process creates a textured and uniform finish, ideal for applications requiring improved adhesion, such as painting or coating. 7. Polished: Abrasive materials are used to smoothen the surface of steel billets and achieve a high-gloss finish. This finish is commonly used for decorative purposes in furniture, architectural components, and jewelry. It's important to consider various factors, such as the intended application, desired aesthetics, and required corrosion resistance, when choosing a surface finish for steel billets.
Q:What are the different surface defects in steel billets?
There are several different types of surface defects that can be found in steel billets. These defects can occur during the manufacturing process or as a result of handling and transportation. Some common surface defects in steel billets include: 1. Scale: Scale is a thin layer of oxide that forms on the surface of steel billets during the heating and rolling process. It appears as a rough, flaky coating and can negatively affect the surface quality and appearance of the billet. 2. Cracks: Cracks can occur on the surface of steel billets due to various reasons such as improper cooling, excessive rolling pressure, or high levels of stress during handling. These cracks can range from minor surface cracks to more severe deep cracks, compromising the integrity and strength of the billet. 3. Lamination: Lamination defects occur when there are layers or sheets of non-metallic inclusions within the steel billet. These layers can cause weak spots in the billet, making it susceptible to failure under stress. 4. Pitting: Pitting is the formation of small, localized cavities or depressions on the surface of the steel billet. It can be caused by various factors such as corrosion, improper cleaning, or exposure to corrosive environments. 5. Slivers: Slivers are thin, elongated pieces of steel that protrude from the surface of the billet. They can be caused by improper cutting or shearing operations, which can result in sharp edges and potential safety hazards. 6. Rolled-in scale: Rolled-in scale refers to the presence of scale that has been embedded into the surface of the billet during the rolling process. This can affect the surface finish and may require additional cleaning or surface treatment. 7. Surface scratches: Surface scratches are shallow marks or abrasions on the surface of the steel billet. They can occur during handling, transportation, or as a result of contact with abrasive surfaces. While they may not significantly impact the structural properties of the billet, they can affect the aesthetics and may require further treatment or polishing. It is important to identify and address these surface defects in steel billets to ensure the quality and performance of the final product. Regular inspection, proper handling, and appropriate surface treatment techniques can help minimize these defects and improve the overall quality of the steel billets.
Q:How are steel billets used in the production of forged parts?
Steel billets are an essential component in the production of forged parts. They serve as the starting material from which the desired shape and size of the forged part is created. To begin the process, steel billets are heated to a specific temperature to make them more malleable. This temperature, known as forging temperature, allows the steel to be easily deformed without cracking or breaking. Heating the billets also improves their structural integrity and makes them more resistant to deformation during the forging process. Once the steel billets reach the desired temperature, they are placed onto a forging press or hammer. The press applies immense pressure to the billets, forcing them to take the shape of the die or mold in which they are placed. This process is known as forging and it allows for the creation of complex shapes and intricate details that cannot be achieved through other manufacturing methods. The forged parts produced from steel billets are known for their exceptional strength, durability, and resistance to wear and tear. They are widely used in various industries, including automotive, aerospace, oil and gas, and construction. Forged parts can range from small components like gears and bolts to larger items such as crankshafts, connecting rods, and turbine blades. In summary, steel billets are used in the production of forged parts by providing the raw material that is shaped and formed through the forging process. The resulting forged parts possess superior mechanical properties and are vital components in many industrial applications.
Q:What are the main factors that affect the competitiveness of steel billets manufacturers?
There are several factors that significantly affect the competitiveness of steel billets manufacturers. These factors can determine the success or failure of a manufacturer in the highly competitive steel industry. 1. Cost of raw materials: The cost and availability of raw materials, such as iron ore and coal, play a crucial role in determining the competitiveness of steel billets manufacturers. Fluctuations in the prices of these raw materials can impact the overall production costs, and manufacturers need to ensure they have a reliable and cost-effective source of raw materials. 2. Production efficiency: The efficiency of the manufacturing process is another key factor. Manufacturers need to have streamlined production processes and advanced technology to maximize output while minimizing costs. Improving production efficiency can help manufacturers achieve economies of scale, which in turn can enhance competitiveness. 3. Quality control: The quality of steel billets is of utmost importance, as it determines the performance and durability of the final products made from these billets. Manufacturers need to implement stringent quality control measures to ensure that their products meet the required industry standards. Consistently producing high-quality steel billets can give manufacturers a competitive edge. 4. Technological advancements: Keeping up with technological advancements is crucial for manufacturers to stay competitive. Investing in advanced machinery, automation, and digitalization can improve production efficiency, reduce costs, and enhance product quality. Manufacturers need to adopt new technologies and continuously innovate to stay ahead of their competitors. 5. Energy costs: Energy-intensive processes are involved in steel billets manufacturing, and the cost of energy can significantly impact the competitiveness of manufacturers. Access to affordable and reliable energy sources is essential for manufacturers to maintain competitive prices. 6. Market demand and competition: The overall demand for steel billets and the level of competition in the market are significant factors affecting competitiveness. Manufacturers need to have a deep understanding of market trends, customer preferences, and emerging applications to align their production accordingly. Additionally, they must develop a strong marketing strategy to effectively compete with other manufacturers in the industry. 7. Access to skilled labor: The availability of skilled labor is crucial for manufacturers to maintain competitiveness. Skilled workers with expertise in steel production processes can contribute to improved efficiency and quality. Manufacturers need to invest in training programs and attract and retain skilled workers to stay competitive. 8. Government regulations and policies: Government regulations related to environmental compliance, labor laws, and trade policies can impact the competitiveness of steel billets manufacturers. Compliance with these regulations can add to the costs and administrative burden for manufacturers. Adapting to changing regulations and staying in line with industry standards is essential to maintain competitiveness. In conclusion, the competitiveness of steel billets manufacturers is influenced by various factors, including raw material costs, production efficiency, quality control, technological advancements, energy costs, market demand and competition, access to skilled labor, and government regulations. Manufacturers need to address these factors strategically to stay competitive in the ever-evolving steel industry.
Q:What are the different heat treatment processes applied to steel billets?
Steel billets can undergo various heat treatment processes to achieve specific properties and characteristics in the final product. Common processes include: 1. Annealing: Steel billets are heated to high temperatures and then slowly cooled, often in a controlled atmosphere or furnace. This relieves internal stresses, enhances machinability, and improves ductility and toughness. 2. Normalizing: Steel billets are heated above the critical range and then air-cooled. This process refines the grain structure, improves mechanical properties, and enhances machinability. 3. Quenching: Steel billets are rapidly cooled by immersing them in a quenching medium (e.g., water, oil, or polymer) after being heated to high temperatures. This creates a hardened and stronger steel with improved wear resistance, but brittleness may increase. 4. Tempering: After quenching, hardened steel billets are reheated to a specific temperature and then cooled in still air. Tempering relieves residual stresses, reduces brittleness, and improves toughness and ductility. 5. Austempering: Steel billets are quenched in a molten salt bath or another medium just above the critical range and held at that temperature until the desired transformation occurs. Austempering results in high strength, improved ductility, and reduced distortion. 6. Martempering: Similar to austempering, martempering involves a shorter holding time at the quenching temperature. This process produces a steel with high strength, toughness, and reduced distortion. 7. Case hardening: Carbon is added to the surface layer of steel billets through carburizing or nitriding. This forms a hardened case with increased wear resistance while maintaining a more ductile core. These examples illustrate some of the heat treatment processes applicable to steel billets. The specific process chosen depends on the desired properties of the final product and the type of steel being treated.
Q:How are steel billets inspected for surface defects?
Steel billets are inspected for surface defects through visual inspection, magnetic particle inspection, and ultrasonic testing. Visual inspection involves a thorough examination of the surface for any visible defects such as cracks, pits, or rough spots. Magnetic particle inspection uses magnetic particles and a magnetic field to identify any surface or near-surface defects that may not be visible to the naked eye. Ultrasonic testing utilizes high-frequency sound waves to identify internal and surface defects by analyzing the reflected waves. These inspection methods ensure the quality and integrity of steel billets before further processing.
Q:What are the main safety considerations when handling steel billets?
When handling steel billets, there are several key safety considerations that should be kept in mind to ensure the well-being of workers and prevent accidents. These considerations include: 1. Personal Protective Equipment (PPE): It is crucial for workers to wear appropriate PPE, such as gloves, safety goggles, steel-toed boots, and hard hats. This equipment can provide protection against potential hazards, such as cuts, impact, and flying debris. 2. Proper Lifting Techniques: Steel billets are heavy and can cause strain or injury if lifted incorrectly. Workers should be trained in proper lifting techniques, including bending at the knees, keeping the back straight, and using mechanical aids, such as cranes or forklifts, whenever feasible. 3. Secure Storage and Transportation: Steel billets should be stored and transported in a secure manner to prevent them from falling or shifting, which could lead to crushing or falling hazards. Stacks of billets should be stable and properly secured using appropriate equipment, such as straps or chains. 4. Slip and Fall Prevention: Steel billets, especially when wet or oily, can create slippery surfaces that increase the risk of slips and falls. Proper housekeeping practices, including regular cleaning and the use of anti-slip mats or coatings, can help minimize this risk. 5. Fire and Heat Hazards: Steel billets can reach high temperatures during production or processing. It is important to have adequate fire prevention and firefighting measures in place, such as fire-resistant clothing, fire extinguishers, and proper storage of flammable materials. 6. Hazardous Substances: Some steel billets may be coated with chemicals or have residues that can pose health risks. Workers should be aware of the potential hazards and follow proper handling procedures, including using appropriate ventilation, wearing respiratory protection, and practicing good hygiene. 7. Machine and Equipment Safety: When using machinery or equipment for handling steel billets, it is essential to follow all safety guidelines and precautions, including lockout/tagout procedures, regular maintenance, and proper training on equipment operation. Overall, prioritizing safety when handling steel billets requires a combination of proper training, adherence to safety protocols, and the use of appropriate equipment and protective measures. By following these safety considerations, the risk of accidents and injuries can be significantly reduced.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords