• Steel Billet Hot Rolled  in Amazing Prices System 1
  • Steel Billet Hot Rolled  in Amazing Prices System 2
  • Steel Billet Hot Rolled  in Amazing Prices System 3
Steel Billet Hot Rolled  in Amazing Prices

Steel Billet Hot Rolled in Amazing Prices

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
50000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1.Structure of Steel Billet

Steel billet(ingot) by cogging or breakdown of semi-finished products, is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity of several kinds of, mainly related to the shape of rolled products. 

2.Main Features of Steel Billet

Rectangular billet continuous casting billet and mainly general carbon steel, low carbon low silicon cold-rolled material, high quality carbon structural steel, high strength low alloy steel, special steel, etc. 

The billet is mainly divided into two kinds from the shape: 

Slab: cross section width and height of the ratio of the larger, mainly used for rolling plate. 

Billet: equal cross section width and height, or a huge difference, mainly used for rolling steel, wire rod. , 

Steel billets have distinct characteristics as compared with already furnished steel bars and products. Billets have a specific grain structure, which enables the metal to be processed more intricately. Steel billets are also known for their malleability and ductility, especially when exposed to varying temperatures during shaping and molding.

3.Processing of Steel Billet

Steel billets are considered fresh and raw, and they must undergo a series of manufacturing processes before they can be used for various purposes. Billets are made by means of freezing molten liquid, and are later exposed to extremely low temperatures in order to allow the metal to take shape and solidify in chemical structure. The temperature manipulates the metal's physical properties, and tones its strength and durability. The subsequent processes provide the metal's curved mold design so that it can fit the allotted space provided by other machines, which complete the finishing procedures.

4.Steel Billet Images 

 

Steel Billet Hot Rolled  in Amazing Prices

Steel Billet Hot Rolled  in Amazing Prices


5. Steel Billet Specification

Hot rolled billet steel 

Size: 50x50mm-180x180mm

Steel Grade: 3SP, 5SP,Q195,Q235,Q255,Q275 Length:3m-12m

MOQ: 1000MT/size

Payment term: TT or LC

Packing: in bulk , bundle

Shipment: by container , bulk vessel

Packaging Details: bundles with steel strips or as customers's requirements

Delivery time: 15-30 days after the deposit

Loading port:Tianjin, or other port China 

Origin :China 

Inspection:Third party inspection before loading.

6.FAQ

We have organized several common questions for our clientsmay help you sincerely: 

1) How to guarantee the quality of the products

 We have established the international advanced quality management systemevery link from raw material to final product we have strict quality testWe resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.

2) How long can we receive the product after purchase?

In the purchase of product within three working days, We will arrange the factory delivery as soon as possible. The pecific time of receiving is related to the state and position of customers.Commonly 7 to 10 working days can be served.

 I want to order some goods with small qty. but more varieties, can you accept the order?

A: Would you pls send the qty. of each model to us by email? We will check it and reply you soon.




Q:What is the role of steel billets in the manufacturing of automotive suspension systems?
Steel billets play a crucial role in the manufacturing of automotive suspension systems. Suspension systems are responsible for providing a smooth and comfortable ride while ensuring the vehicle's stability and handling. Steel billets are used as a raw material to fabricate various components of the suspension system, such as control arms, coil springs, sway bars, and stabilizer links. One of the primary requirements of suspension systems is strength and durability. Steel billets, due to their high tensile strength and excellent mechanical properties, are an ideal choice for manufacturing suspension components. These billets are typically made from carbon steel, which offers exceptional strength and can withstand the heavy loads and forces experienced by suspension systems. The process of manufacturing suspension components from steel billets involves several stages. Firstly, the billets are heated to a specific temperature, typically above their recrystallization temperature, to make them more malleable. This allows the material to be easily shaped and formed into the desired component. Once heated, the billets are subjected to various forming processes, such as hot forging, cold forging, or machining, depending on the specific component being manufactured. These processes help shape the billets into control arms, coil springs, or other suspension components with precise dimensions and specifications. The use of steel billets in suspension systems offers several advantages. Firstly, steel is a cost-effective material, making the overall manufacturing process more economical. Additionally, steel provides excellent strength-to-weight ratio, allowing for lighter suspension components without compromising on strength and durability. This, in turn, contributes to improved fuel efficiency and overall vehicle performance. Moreover, steel billets have high resistance to wear, corrosion, and fatigue, ensuring that the suspension components can withstand the harsh operating conditions and last for a long time. They also offer excellent damping characteristics, helping to absorb and dissipate vibrations and shocks, further enhancing the ride comfort and stability of the vehicle. In conclusion, steel billets are essential in the manufacturing of automotive suspension systems. Their strength, durability, and malleability make them an ideal raw material for fabricating various suspension components. By utilizing steel billets, automotive manufacturers can produce suspension systems that provide a smooth ride, stability, and enhanced performance, contributing to overall driver and passenger comfort and safety.
Q:How are steel billets used in the production of pipes?
Steel billets are melted and then cast into a solid form, which is then rolled or forged to form pipes of various sizes and shapes. These billets serve as the raw material for the pipe production process and are essential in ensuring the strength, durability, and structural integrity of the pipes.
Q:Are steel billets used in the shipbuilding industry?
Yes, steel billets are commonly used in the shipbuilding industry. Steel billets are semi-finished steel products that are further processed into various shapes and sizes to construct different components of a ship's structure, such as hulls, decks, and bulkheads. These billets provide the necessary strength and durability required for the construction of ships, making them an essential material in the shipbuilding process.
Q:What are the different types of steel billet inspection equipment?
There are several different types of steel billet inspection equipment used in the manufacturing industry. These equipment are specifically designed to ensure the quality and integrity of the steel billets before they are further processed. 1. Ultrasonic Testing (UT) Equipment: This type of equipment uses high-frequency sound waves to detect internal flaws or defects in the steel billets. It can identify cracks, voids, and other imperfections that may affect the strength and performance of the final product. 2. Magnetic Particle Inspection (MPI) Equipment: MPI equipment uses a magnetic field and specially formulated particles to identify surface and near-surface defects in the steel billets. It can detect cracks, seams, and other imperfections that may not be visible to the naked eye. 3. Eddy Current Testing (ECT) Equipment: ECT equipment uses electromagnetic induction to detect surface cracks and defects in the steel billets. It can identify variations in electrical conductivity caused by localized defects or changes in material properties. 4. Visual Inspection Equipment: Visual inspection equipment includes tools such as magnifying glasses, microscopes, and cameras to visually examine the steel billets for surface defects, irregularities, or other visual anomalies. This type of equipment is often used in conjunction with other inspection methods for a comprehensive analysis. 5. Dimensional Measurement Equipment: This type of equipment is used to measure the dimensional accuracy and consistency of the steel billets. It includes tools such as calipers, micrometers, and laser scanners to ensure that the billets meet the required specifications and tolerances. 6. Surface Roughness Measurement Equipment: Surface roughness measurement equipment is used to quantify the surface finish of the steel billets. It uses a stylus or laser to measure the irregularities on the surface, providing important information about the billet's suitability for further processing. 7. X-ray Testing Equipment: X-ray equipment uses electromagnetic radiation to penetrate the steel billets and detect internal defects such as cracks, voids, or inclusions. This method is particularly effective for larger billets or when a comprehensive assessment of the internal structure is required. These are some of the commonly used steel billet inspection equipment in the manufacturing industry. Each type of equipment plays a crucial role in ensuring that the steel billets meet the required quality standards and are suitable for further processing into various end products.
Q:What are the potential applications of steel billets in the textile aftermarket?
The textile aftermarket offers a multitude of possibilities for the use of steel billets. One area where they can be applied is in the manufacturing of textile machinery and equipment. Steel billets are versatile enough to produce various components such as gears, shafts, and frames, thanks to their exceptional strength and durability. These qualities enable them to withstand the demanding conditions of textile production. Another potential application of steel billets in the textile aftermarket lies in the production of accessories and hardware. Steel billets can be utilized to create a wide array of essential accessories, including buttons, zippers, and buckles. These accessories play a crucial role in the textile industry and require materials that are both robust and resistant to wear and tear. Furthermore, steel billets can be employed in the fabrication of textile molds and tooling. Textile molds are utilized to create intricate patterns and designs on fabrics, while tooling is necessary for cutting, shaping, and finishing textile products. Steel billets provide the necessary strength and stability required for these applications. Additionally, steel billets can be utilized in the construction of textile warehouses and storage facilities. The high load-bearing capacity of steel makes it an excellent choice for constructing durable and secure storage structures. These warehouses can effectively house textile products, raw materials, and machinery, ensuring their safety and longevity. In conclusion, the potential applications of steel billets in the textile aftermarket are extensive. They can be used in machinery and equipment production, accessories and hardware creation, molds and tooling fabrication, as well as warehouse and storage facility construction. With their strength, durability, and reliability, steel billets are an indispensable material in the textile industry.
Q:Can steel billets be used for making cutlery?
Yes, steel billets can be used for making cutlery. Steel billets are the raw material used in the production of various steel products, including cutlery. The billets are heated and then shaped into desired forms, such as knives, forks, or spoons, through processes like forging or casting. The resulting steel cutlery is known for its strength, durability, and ability to hold a sharp edge. However, it is important to note that the specific type of steel used and the manufacturing processes play a significant role in determining the quality and characteristics of the cutlery.
Q:What are the different types of steel billet extrusion processes?
The manufacturing industry utilizes various steel billet extrusion processes, each with its own distinct characteristics. These processes employ high pressure to shape solid steel billets into desired profiles or shapes. 1. The most frequently employed method is direct extrusion. This process involves placing the billet within a container, commonly referred to as a "container" or "container die." The container possesses a small opening, known as a "die," through which the billet is propelled using a ram or piston. The billet is then forced through the die, resulting in the formation of the desired shape. 2. Another technique, indirect extrusion, involves a stationary container die. The billet is pushed through the die using a punch or ram. The billet is positioned inside a hollow chamber called a "container" or "container die," featuring a smaller opening at one end. Pressure is applied to the billet using the punch, compelling it to flow through the die and adopt the desired profile. 3. Impact extrusion shares similarities with direct extrusion but incorporates a specially designed punch. This punch strikes the billet with a significant impact force, causing it to flow and take on the shape of the die. Impact extrusion is frequently utilized to produce small, intricate shapes with thin walls. 4. Hydrostatic extrusion employs a sealed chamber filled with a pressurized fluid, typically oil or water, in which the billet is placed. The fluid pressure is utilized to force the billet to flow through the die and acquire the desired shape. Hydrostatic extrusion is commonly employed for the production of complex shapes with high precision. 5. Cold extrusion is performed at room temperature without the need for heating the steel billet. This method is often used to produce small, intricate parts with high dimensional accuracy. It offers a cost-effective approach, enabling the production of parts with excellent surface finish. The selection of a specific steel billet extrusion process depends on various factors, including the desired shape, size, material properties, and production requirements. Each process has its own advantages and limitations.
Q:How do steel billets contribute to the corrosion resistance of a product?
The corrosion resistance of a product is not directly affected by steel billets. Instead, it is determined by the specific composition and treatment of the steel billets. Steel billets are essentially semi-finished steel products that act as raw materials for various downstream processes like forging, rolling, and extrusion, which ultimately produce the final product. To improve the corrosion resistance of a product, specific alloying elements and controlled processing techniques can be used during the manufacturing of steel billets. For example, stainless steel billets have a higher chromium content, which creates a protective oxide layer called chromium oxide on the steel's surface. This oxide layer acts as a barrier, preventing direct contact between the steel and corrosive environments, thus enhancing the corrosion resistance of the final product. Additionally, steel billets can undergo further treatments like heat treatment, surface coatings, or galvanization to enhance their corrosion resistance. Heat treatment processes like annealing, quenching, or tempering can modify the microstructure of steel billets, resulting in improved corrosion resistance properties. Surface coatings like paint, powder coating, or electroplating can provide an additional layer of protection, preventing direct exposure to corrosive substances. Galvanization involves coating steel billets with a layer of zinc, which acts as a sacrificial anode, corroding instead of the underlying steel to protect it. In conclusion, while steel billets themselves do not directly contribute to the corrosion resistance of a product, the composition, alloying elements, and treatments applied during their manufacturing process play a crucial role in enhancing the corrosion resistance of the final product.
Q:What are the safety measures involved in handling steel billets?
When handling steel billets, there are several important safety measures that should be followed to ensure the well-being of workers and prevent accidents. 1. Personal Protective Equipment (PPE): It is essential for workers to wear appropriate PPE, such as safety goggles, gloves, steel-toed boots, and helmets, to protect themselves from potential hazards. This equipment provides protection against sharp edges, flying debris, and falling objects. 2. Training: Proper training is crucial for workers involved in handling steel billets. They should be trained in safe lifting techniques, handling procedures, and the use of equipment like cranes or forklifts. This knowledge will help minimize the risk of musculoskeletal injuries and accidents caused by improper handling. 3. Equipment Inspection: Regular inspection of equipment, such as cranes, hoists, and lifting slings, is crucial to ensure their proper functioning. Any defects or malfunctions should be reported and repaired promptly to prevent accidents. 4. Secure Storage: Steel billets should be stored in a secure and organized manner to prevent them from falling or tipping over. Proper racking systems and storage areas should be used to ensure stability and prevent accidents due to falling objects. 5. Adequate Lighting: Good lighting is essential in the working area to ensure clear visibility and prevent accidents caused by tripping or colliding with objects. 6. Floor Conditions: The floor should be kept clean and free from hazards, such as oil spills or debris, that could cause slips, trips, or falls. Regular cleaning and maintenance are necessary to ensure a safe working environment. 7. Communication: Clear communication among workers involved in handling steel billets is crucial to prevent accidents. Signals, hand gestures, and use of radios or other communication devices can help coordinate movements and prevent collisions or accidents. 8. Emergency Preparedness: Adequate emergency preparedness measures should be in place, including fire extinguishers, first aid kits, and evacuation plans. Workers should be trained in emergency procedures to ensure a swift and safe response in case of an incident. By following these safety measures, risks associated with handling steel billets can be minimized, ensuring a safer work environment for all involved.
Q:What are the common defects found in steel billets?
Steel billets can exhibit various defects, both from the manufacturing process and external factors. One such defect is surface cracks, which can arise from inadequate cooling, handling, or excessive stress during rolling or forming. These cracks can weaken the billet and compromise its strength and integrity. Internal voids or inclusions are another common defect, caused by impurities or foreign particles in the steel. These voids create weak points in the billet, potentially leading to structural failures or diminished mechanical properties. Misalignment or misshaping is a defect that occurs during cooling or forming, resulting in uneven thickness or dimensions. This flaw adversely impacts the billet's performance and suitability for its intended application. Furthermore, excessive segregation of alloying elements can lead to uneven property distribution within the billet. This inconsistency hampers the mechanical properties and overall quality. Lastly, surface defects like scale, pitting, or imperfections can manifest due to improper handling, storage, or exposure to harsh environments. Though these defects may not affect the billet's structural integrity, they do impact the surface finish and aesthetics of the final product. To ensure the production of high-quality and reliable steel products, it is crucial to identify and address these common defects in steel billets. Regular inspections, quality control measures, and appropriate handling and storage techniques play vital roles in minimizing and preventing these defects.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords