Square Steel Billet 150mm

Ref Price:
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
-
Supply Capability:
-
  • OKorder Service Pledge
  • Quality Product
  • Order Online Tracking
  • Timely Delivery
  • OKorder Financial Service
  • Credit Rating
  • Credit Services
  • Credit Purchasing

Add to My Favorites

Follow us:

Product Description:

OKorder is offering Square Steel Billet 150mm at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Square Steel Billet 150mmare ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Square Steel Billet 150mm are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: Q195 – 235

Certificates: ISO, SGS, BV, CIQ

Length: 6m – 12m, as per customer request

Packaging: Export packing, nude packing, bundled

Chinese Standard (H*W*T)

Weight (Kg/m)

6m (pcs/ton)

Light I (H*W*T)

Weight (Kg/m)

6m (pcs/ton)

Light II (H*W*T)

Weight (Kg/m)

6M

100*68*4.5

11.261

14.8

100*66*4.3

10.13

16.4

100*64*4

8.45

19.7

120*74*5.0

13.987

11.9

120*72*4.8

12.59

13.2

120*70*4.5

10.49

15.8

140*80*5.5

16.89

9.8

140*78*5.3

15.2

10.9

140*76*5

12.67

13.1

160*88*6

20.513

8.1

160*86*5.8

18.46

9

160*84*5.5

15.38

10.8

180*94*6.5

24.143

6.9

180*92*6.3

21.73

7.6

180*90*6

18.11

9.2

200*100*7

27.929

5.9

200*98*6.8

25.14

6.6

200*96*6.5

20.95

7.9

220*110*7.5

33.07

5

220*108*7.3

29.76

5.6

220*106*7

24.8

6.7

250*116*8

38.105

4.3

250*114*7.8

34.29

4.8

250*112*7.5

28.58

5.8

280*122*8.5

43.492

3.8

280*120*8.2

39.14

4.2

280*120*8

36.97

4.5

300*126*9

48.084

3.4

300*124*9.2

43.28

3.8

300*124*8.5

40.87

4

320*130*9.5

52.717

3.1

320*127*9.2

48.5

3.4

360*136*10

60.037

2.7

360*132*9.5

55.23

3

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q4: What makes stainless steel stainless?

A4: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.

Q5: Can stainless steel rust?

A5: Stainless does not "rust" as you think of regular steel rusting with a red oxide on the surface that flakes off. If you see red rust it is probably due to some iron particles that have contaminated the surface of the stainless steel and it is these iron particles that are rusting. Look at the source of the rusting and see if you can remove it from the surface.

 

Images:

Q:
Steel billets are an essential raw material used in the production of hydraulic components. These billets, which are semi-finished forms of steel, serve as the starting point for manufacturing various hydraulic parts. To begin with, steel billets are heated to high temperatures to make them malleable. This process is known as hot rolling, and it allows the billets to be easily shaped and formed into the desired hydraulic component. The hot billets are then passed through a series of rollers to achieve the desired size and shape, such as bars, rods, or tubes. Once the steel billets have been shaped, they undergo further machining processes to create specific hydraulic components. For example, they may be cut, drilled, or threaded to form pistons, cylinders, valve bodies, or other essential parts used in hydraulic systems. The use of steel billets in hydraulic component production offers several advantages. Firstly, steel is known for its high strength and durability, making it an ideal material for hydraulic applications where components are subjected to high pressure and heavy loads. Additionally, steel's excellent corrosion resistance ensures the longevity of hydraulic components, even in harsh operating conditions. Furthermore, steel billets allow for precise dimensional control during the manufacturing process. This ensures that the hydraulic components meet the required specifications and can seamlessly integrate into hydraulic systems without any compromise in performance. In conclusion, steel billets play a crucial role in the production of hydraulic components. By starting with these semi-finished forms of steel, manufacturers can create high-quality, durable, and precisely engineered parts that are vital for the efficient operation of hydraulic systems.
Q:
Common surface defects in steel billets during cooling include cracks, surface scaling or oxidation, and surface decarburization.
Q:
Yes, steel billets can be customized according to specific requirements. Steel billets are semi-finished products that are typically used for further processing to produce various steel products, such as bars, rods, and wire. The customization of steel billets involves adjusting their dimensions, chemical composition, and mechanical properties to meet the specific needs of different applications. Steel billets can be customized in terms of their size and shape. Depending on the requirements, the length, width, and thickness of the billets can be modified to ensure optimal efficiency during subsequent processing. Additionally, the shape of the billets can be customized to match the desired end product, such as square, round, or rectangular. Furthermore, the chemical composition of steel billets can be customized to achieve specific properties. By adjusting the percentage of various elements, such as carbon, manganese, and alloying elements like chromium or nickel, the steel can be tailored to exhibit certain characteristics, such as increased strength, improved corrosion resistance, or enhanced weldability. Finally, the mechanical properties of steel billets can be customized through heat treatment processes. Heat treatment techniques like quenching and tempering can be applied to control the hardness, toughness, and overall strength of the steel, making it suitable for specific applications. Overall, steel billets can be customized in terms of size, shape, chemical composition, and mechanical properties to meet specific requirements, ensuring that they can be effectively used in various industries and applications.
Q:
The main factors affecting the formability of stainless steel billets include the composition of the steel, its microstructure, temperature, strain rate, and lubrication during the forming process. Additionally, the presence of impurities, such as sulfur and phosphorus, can also impact formability.
Q:
Yes, steel billets can be used in the production of utensils and cutlery. Steel billets are semi-finished products that can be further processed into various shapes and forms, including utensils and cutlery. Steel has excellent properties such as strength, durability, and corrosion resistance, which make it suitable for manufacturing utensils and cutlery. Steel billets are often melted and cast into specific shapes, then further processed through forging, stamping, or machining to create the desired utensils and cutlery items. The final products can range from spoons, forks, and knives to more intricate items like serving spoons, ladles, and cheese slicers. Steel utensils and cutlery are widely used and preferred due to their longevity and hygienic properties.
Q:
Yes, steel billets are recyclable. Steel is one of the most recycled materials in the world, and the process of recycling steel billets is well-established and highly efficient. When steel billets reach the end of their useful life, they can be melted down and reused to produce new steel products. This recycling process helps to conserve natural resources, reduce energy consumption, and minimize environmental impact. Additionally, recycling steel billets also helps to reduce the amount of waste sent to landfills and contributes to the circular economy by promoting the sustainable use of resources.
Q:
The mechanical properties of steel billets are influenced by several factors. These factors include the chemical composition, heat treatment, microstructure, grain size, processing conditions, surface condition, and environmental factors. 1. Chemical composition: The mechanical properties of steel billets are determined by the levels of carbon, manganese, silicon, and other alloying elements in the steel. These elements impact the strength, hardness, and ductility of the billets. 2. Heat treatment: By controlling the temperature and duration of heating and cooling, the mechanical properties of steel billets can be significantly altered. Techniques like annealing, quenching, and tempering can enhance the hardness, toughness, and overall strength of the steel. 3. Microstructure: The mechanical properties of steel are greatly influenced by its microstructure, which is determined by factors like cooling rate and alloying elements. Different phases, such as ferrite, pearlite, and martensite, affect the strength, ductility, and toughness of the billets. 4. Grain size: The size and distribution of grains in the steel billets have an impact on their mechanical properties. Finer grain sizes generally result in improved strength and toughness, while larger grain sizes may lead to reduced mechanical properties. 5. Processing conditions: The mechanical properties of steel billets are influenced by the processing conditions during production, such as temperature and rate of deformation. Techniques like rolling, forging, and extrusion affect the grain structure and overall mechanical behavior of the steel. 6. Surface condition: The mechanical properties of steel billets can be significantly affected by the surface condition, including the presence of defects like cracks, voids, or surface contamination. Surface defects act as stress concentration points and reduce the overall strength and integrity of the steel. 7. Environmental factors: The mechanical properties of steel billets can be influenced by environmental conditions like temperature, humidity, and exposure to corrosive substances. Corrosion can decrease strength and structural integrity, while high temperatures can cause softening or thermal degradation of the steel. Considering these factors is crucial in the design and manufacturing of steel billets to ensure that the desired mechanical properties are achieved for specific applications.
Q:
There are several surface finishing techniques that are commonly used for steel billets. These techniques are employed to enhance the appearance, improve corrosion resistance, and provide a protective coating to the steel billets. Some of the different surface finishing techniques used for steel billets are: 1. Hot Rolling: This technique involves passing the steel billets through a series of hot rollers, which not only shapes the billets but also creates a smooth surface finish. Hot rolling is commonly used to produce steel plates, sheets, or structural shapes. 2. Cold Rolling: Cold rolling is similar to hot rolling, but it is performed at room temperature. This technique helps to achieve a smoother surface finish, increased dimensional accuracy, and improved mechanical properties of the steel billets. 3. Shot Blasting: Shot blasting is a process where steel billets are bombarded with small metallic or non-metallic particles at high velocity. This technique helps to remove scale, rust, and other contaminants from the billet's surface, resulting in a clean and uniform appearance. 4. Pickling: Pickling involves immersing the steel billets in an acid solution to remove oxides, scale, and rust from the surface. This technique helps to achieve a clean and smooth surface finish, ready for further processing or coating. 5. Galvanizing: Galvanizing is a popular surface finishing technique that involves coating the steel billets with a layer of zinc. This coating provides excellent corrosion resistance and protects the steel from environmental factors. Galvanizing can be done through hot-dip galvanizing, electro-galvanizing, or mechanical galvanizing methods. 6. Painting: Painting is often used as a surface finishing technique for steel billets. It involves applying a layer of paint or protective coating to the surface, which not only enhances the appearance but also provides protection against corrosion and weathering. 7. Passivation: Passivation is a chemical process used to remove free iron or iron oxides from the surface of steel billets. This process helps to improve the corrosion resistance of the steel and leaves a clean and passive surface. 8. Polishing: Polishing involves using abrasive materials or compounds to smoothen the surface of the steel billets. This technique is commonly used to achieve a high gloss or mirror-like finish, enhancing the aesthetic appeal of the steel. Each of these surface finishing techniques offers its own advantages and is chosen based on the specific requirements of the steel billets, such as appearance, corrosion resistance, and functionality.
Q:
The chemical composition of steel billets typically consists of iron as the primary element, along with varying amounts of carbon, manganese, silicon, sulfur, and phosphorus. The exact composition may vary depending on the specific grade and intended use of the steel billets. Carbon is usually present in small amounts, typically ranging from 0.02% to 0.5%, as it helps to increase the strength and hardness of the steel. Manganese is often added to improve the toughness and hardenability of the steel, while silicon helps in deoxidizing the metal and enhancing its strength. Sulfur and phosphorus are impurities that are typically kept at low levels, as they can negatively affect the mechanical properties of the steel. Additionally, small amounts of other elements such as chromium, nickel, and molybdenum may be added to enhance specific properties of the steel, such as corrosion resistance or high-temperature strength.
Q:
Wire rods are produced from steel billets, which are a vital raw material. These cylindrical billets serve as the starting point for the wire rod manufacturing process. To achieve the desired temperature for hot rolling, the steel billets are heated in a furnace. Once heated, the billets are sent through a series of rolling mills, where they undergo hot rolling. During this process, the billets are passed through rollers that gradually decrease their diameter and increase their length. This transformation results in the creation of long, thin, and continuous wire rods. Hot rolling causes the steel billets to undergo plastic deformation, wherein their shape changes due to the application of heat and pressure. This alteration aligns the internal grain structure of the steel, resulting in improved mechanical properties like strength, ductility, and toughness. Upon completion of the hot rolling process, the wire rods are typically coiled and cooled. These rods may then undergo additional treatments such as pickling, surface coating, or heat treatment to enhance their quality and suitability for specific applications. Finally, the wire rods are ready for use in various industries, such as automotive, construction, and manufacturing. They are utilized in the production of a wide range of products including wires, cables, nails, screws, and reinforcement bars. In conclusion, wire rods are derived from steel billets through the hot rolling process. This involves heating the billets, passing them through rolling mills to alter their dimensions, and subsequently treating and cooling them. The resulting wire rods play a crucial role in the production of diverse products, thus making them an indispensable component.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request