• Steel Square Billet Bar For Rebar Production System 1
  • Steel Square Billet Bar For Rebar Production System 2
Steel Square Billet Bar For Rebar Production

Steel Square Billet Bar For Rebar Production

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Range of thickness: 150-240 - mm +/- 5 mm width range: 880-1530 - mm +/- 20 mm

Length: 3700-10000 - mm +/- 500 - mm

Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm

Length: 9000 mm

Section of tolerance: billet: 1.0 +/- 2.0-1.0 +/- 1.0 mm slab: width: +/- 2.0 mm thickness: +/- 3.0 mm

The length tolerance: +/- 200 mm

Section diagonal tolerance: 3.5-8.0 MM

Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm

Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm

Surface tilt: no more than billet section 0.1

Bending: every 1 m length is not more than 10 mm.

 

Notes:

1, The theoretical weights in the list, base on the density of 7.85 g/cm3.

2, Formula for theoretical weight of Square bar: (length of a side)2 * 0.00785

3, The numbers with mean that they are not regular or we don’t offer them.

-Regular length of Square Bar:

Steel

Length of a side (mm)

Length of steel (m)

Normal steel

< 25

4~10

> 25

3~9

Steel of high quality

All measure

2~6

Tool steel >75

1~6

Usage/Applications

-The Square Bar is normally used as structure steel.

-Row material for other structure steel like steel angles, channels, I-beams, H-beams, etc…

Packaging & Delivery

-Packing Detail: The products can be packed in bundles by steel wires.

-Marks: We make tag marks and color marks. The tag marks with white background and red company logo will be tied up to each bundle of the products. The information is usually including basic information of products and company and other information requested by customers. As for color marks, we will paint both ends of bundles to make sure that it will be more convenient for customers to distinguish them from other products.

-Delivery Detail: 30~45 working days after receive buyer’s T.T. or L/C.

Transportation

-The products can be delivered by bulk vessel or by container. As for container, products with the length of 6m will be loaded in 20’ container, with 9m or 12m, in 40’ container.

-The maximum quantity of loading of container is 25 tons.

-The products are usually transported to the nearest port from the production place.

Q:What is the average lifespan of a steel billet in a structural application?
Several factors can greatly affect the average lifespan of a steel billet in a structural application. These factors encompass the quality of the steel utilized, the specific structural application, the environmental conditions, and the level of maintenance and care given to the structure. Steel is generally acknowledged for its durability and longevity, making it a popular choice for structural applications. When designed, constructed, and maintained properly, a steel billet can have a lifespan ranging from several decades to over a century. However, it is important to acknowledge that certain factors can significantly impact the lifespan of a steel billet. For instance, exposure to harsh environmental conditions like extreme temperatures, corrosive substances, or high levels of humidity can expedite the steel's deterioration and decrease its lifespan. Similarly, the structural application itself plays a vital role in determining the lifespan of a steel billet. Structures subjected to heavy loads, frequent vibrations, or dynamic stresses may experience accelerated deterioration and necessitate more frequent maintenance or replacement. Finally, the quality of the steel used also affects the lifespan of a steel billet. Higher quality steels, such as those with exceptional corrosion resistance or higher tensile strength, generally have longer lifespans compared to lower grade steels. To accurately ascertain the average lifespan of a steel billet in a specific structural application, it is advisable to consult with structural engineers, manufacturers, or industry experts. These professionals can evaluate the specific conditions and provide a more precise estimate based on their expertise and knowledge of the particular project.
Q:How are steel billets classified based on their chemical composition?
Different grading systems can be used to classify steel billets based on their chemical composition. One commonly used method involves categorizing the billets into three main groups: low carbon steel billets, medium carbon steel billets, and high carbon steel billets. Low carbon steel billets typically contain less than 0.25% carbon and are known for their excellent ductility and weldability. They are often used in applications that require good formability and low strength, such as construction materials and automotive components. Medium carbon steel billets, on the other hand, have a carbon content ranging from 0.25% to 0.60%. These billets offer improved strength and hardness compared to low carbon steel billets and are commonly used in applications that require higher strength, such as machinery parts, shafts, and gears. High carbon steel billets have a carbon content greater than 0.60% and are recognized for their exceptional strength and hardness. They are commonly used in applications that demand high wear resistance, such as cutting tools, springs, and knives. In addition to carbon content, the presence of other chemical elements in the steel billets can also impact their classification. Elements like chromium, nickel, and molybdenum, known as alloying elements, can enhance the properties of the steel, such as corrosion resistance or heat resistance. Steel billets can therefore be further classified based on the specific alloying elements present and their concentrations. Overall, classifying steel billets based on their chemical composition allows for a better understanding and selection of the appropriate material for specific applications. This ensures that the desired properties and performance of the final product are achieved.
Q:How are steel billets used in the production of conveyor systems?
Steel billets are an essential component in the production of conveyor systems as they are used to create the main structural framework. The billets are first heated and then passed through a series of rollers to shape them into the desired form of the conveyor system. This process, known as hot rolling, ensures that the steel billets are transformed into long, slender bars with a consistent cross-sectional shape. Once the steel billets have been shaped, they are further processed to create various components of the conveyor system. These components include conveyor frames, support beams, brackets, and other structural elements that provide stability and strength to the overall system. Steel billets are well-suited for this purpose due to their high tensile strength and durability. In addition to the structural components, steel billets are also used to produce conveyor rollers. These rollers are crucial for facilitating the movement of materials along the conveyor system. The steel billets are machined and formed into cylindrical shapes, which are then fitted with bearings to ensure smooth rotation. The rollers are then installed at regular intervals along the conveyor, allowing for efficient and continuous material handling. Moreover, steel billets are often used to manufacture conveyor belts. The billets are processed into thin sheets, which are then coated with various materials such as rubber or fabric to provide grip and durability. These belts are responsible for carrying the load of the materials being transported and are designed to withstand heavy usage and harsh environments. Overall, steel billets play a vital role in the production of conveyor systems by providing the necessary structural support, as well as components like rollers and belts. Their strength, durability, and versatility make them an ideal choice for constructing conveyor systems that can handle heavy loads and ensure efficient material handling in various industries.
Q:How are steel billets used in the manufacturing of gears and bearings?
Steel billets are used in the manufacturing of gears and bearings as they serve as the raw material for forging or casting processes. These billets are heated and shaped into the desired form, such as gear blanks or bearing races, using specialized machinery. The high strength and durability of steel make it an ideal material choice for these applications, ensuring the gears and bearings can withstand heavy loads and provide smooth operation.
Q:What is the role of steel billets in the manufacturing of industrial boilers?
Steel billets play a crucial role in the manufacturing of industrial boilers as they serve as the raw material from which various boiler components are fabricated. These billets are heated and formed into specific shapes and sizes to create boiler tubes, plates, and other structural elements. The high strength and thermal conductivity of steel make it an ideal choice for withstanding the high temperatures and pressures involved in boiler operations. Ultimately, steel billets provide the foundation for the construction and functionality of industrial boilers, ensuring their durability and efficiency in various industrial applications.
Q:What is the typical fatigue strength of a steel billet?
The fatigue strength of a steel billet can vary based on factors like its specific steel composition, manufacturing process, and surface treatments utilized. Fatigue strength generally refers to a material's ability to endure repeated loading and unloading cycles without breaking. Compared to other materials, steel typically possesses high fatigue strength due to its strength and durability. However, the precise fatigue strength value can differ considerably depending on the steel grade and intended use. In engineering and industry, fatigue strength is often represented by a stress-life (S-N) curve. This curve depicts the stress level exerted on the steel billet versus the number of cycles required for failure. The curve's shape offers valuable insights into the steel's fatigue behavior. It is crucial to note that determining the fatigue strength of a steel billet usually involves rigorous testing procedures. Fatigue testing machines are employed to subject the material to cyclic loading until failure occurs. These tests assist engineers and manufacturers in establishing safe operating limits for various steel grades and applications. Consequently, without specific details regarding the steel grade, manufacturing process, and other factors, it is not feasible to provide an exact value for the typical fatigue strength of a steel billet. Nevertheless, it is widely acknowledged that steel possesses excellent fatigue resistance and can withstand a significant number of cycles before failure, rendering it a dependable choice for numerous structural and mechanical applications.
Q:What are the different methods of hardness testing for steel billets?
There are several methods of hardness testing for steel billets, each offering different advantages and levels of accuracy. Some of the most common methods include: 1. Rockwell hardness testing: This is one of the most widely used methods and measures the depth of indentation caused by a specific load on a steel billet's surface. It provides a hardness value based on the depth of penetration, making it convenient and relatively quick to perform. 2. Brinell hardness testing: This method involves indenting a steel billet's surface with a spherical indenter under a specific load. The diameter of the resulting impression is measured to determine the hardness value. Brinell testing is especially useful for large billets or materials with a coarse microstructure. 3. Vickers hardness testing: Vickers testing uses a pyramidal diamond indenter to create an impression on the surface of a steel billet. The diagonal length of the impression is measured, and the hardness value is calculated based on the applied load. Vickers testing is suitable for a wide range of materials, including steel billets. 4. Knoop hardness testing: Similar to Vickers testing, Knoop hardness testing also uses a pyramidal diamond indenter. However, the indentation shape is elongated and narrower, allowing for measurements on smaller or thinner samples. This method is often used for precise and microhardness testing. 5. Leeb hardness testing: Leeb testing is a portable and non-destructive method that uses an impact device to measure the rebound hardness of a steel billet. The device strikes the surface with a small ball and measures the velocity of the rebound, which is then converted into a hardness value. This method is commonly used for on-site or in-field measurements. 6. Ultrasonic hardness testing: This method uses ultrasonic waves to measure the hardness of a steel billet. The waves are transmitted through the material, and the time taken for the waves to travel through the billet is measured. This data is then converted into a hardness value. Ultrasonic testing is non-destructive and suitable for large or thick billets. It is important to note that each hardness testing method has its own limitations and considerations. The choice of method will depend on factors such as the size, shape, and surface condition of the steel billet, as well as the desired accuracy and convenience of the testing process.
Q:What are the main factors affecting the corrosion resistance of alloy steel billets?
The corrosion resistance of alloy steel billets is influenced by several key factors. Firstly, the composition of the alloy steel plays a crucial role in determining its resistance to corrosion. Alloy steels containing a higher percentage of elements such as chromium, nickel, and molybdenum tend to have enhanced corrosion resistance compared to steels with lower alloy content. Secondly, the presence of protective surface coatings or finishes can significantly improve the corrosion resistance of alloy steel billets. Various coatings, such as zinc or epoxy, act as a barrier between the metal surface and the corrosive environment, preventing the steel from coming into direct contact with corrosive agents. Additionally, the manufacturing process used to produce alloy steel billets can impact their corrosion resistance. Proper heat treatment and quenching processes can enhance the microstructure of the alloy, creating a more corrosion-resistant material. The environment in which the alloy steel billets are exposed is another crucial factor. Factors such as temperature, humidity, pH levels, and the presence of corrosive substances can all influence the corrosion resistance of the alloy steel billets. For example, exposure to high temperatures or acidic environments can accelerate corrosion, while exposure to dry or neutral conditions may have a minimal impact on corrosion resistance. Lastly, the design and maintenance of structures or equipment made from alloy steel billets can affect their corrosion resistance. Proper design considerations, such as avoiding sharp corners or crevices where moisture can accumulate, can help minimize the risk of corrosion. Regular inspection, cleaning, and maintenance can also help prevent corrosion by identifying and addressing any issues promptly. In conclusion, the main factors affecting the corrosion resistance of alloy steel billets include the composition of the steel, the presence of protective coatings, the manufacturing process, the environmental conditions, and the design and maintenance practices. By considering these factors, manufacturers and users can ensure that alloy steel billets exhibit optimal corrosion resistance in various applications.
Q:What are the common applications of stainless steel billets?
Due to their exceptional properties and versatility, stainless steel billets find widespread use in various industries. Some common applications of stainless steel billets include: 1. Construction: Extensively used in the construction industry for structural purposes, stainless steel billets manufacture beams, columns, and other load-bearing components due to their high strength and corrosion resistance. 2. Automotive Industry: The automotive industry utilizes stainless steel billets to manufacture components like exhaust systems, engine parts, and suspension components. The high temperature and corrosion resistance of stainless steel make it an ideal choice for these applications. 3. Aerospace Industry: In the aerospace industry, stainless steel billets manufacture critical components such as aircraft frames, landing gear, and engine parts. Stainless steel's high strength-to-weight ratio and resistance to extreme temperatures make it a preferred material in this sector. 4. Oil and Gas Industry: The oil and gas industry widely employs stainless steel billets due to their excellent corrosion resistance. They manufacture pipes, fittings, valves, and other equipment that come in contact with corrosive fluids or gases. 5. Food Processing Industry: The hygienic properties and resistance to corrosion caused by food and cleaning agents make stainless steel billets extensively used in the food processing industry. Equipment like storage tanks, conveyors, and processing machinery are manufactured using stainless steel billets. 6. Medical and Pharmaceutical Industry: The medical and pharmaceutical industry utilizes stainless steel billets for manufacturing surgical instruments, implants, and equipment. Stainless steel's biocompatibility and sterilization capabilities make it suitable for these critical applications. 7. Marine Industry: In the marine industry, stainless steel billets are used to manufacture components such as ship hulls, propellers, and fittings. The corrosion resistance of stainless steel is crucial in the harsh saltwater environment. 8. Power Generation Industry: Power plants employ stainless steel billets for manufacturing boilers, heat exchangers, and turbine components. The high-temperature and corrosion resistance properties of stainless steel make it suitable for these demanding applications. In conclusion, stainless steel billets possess exceptional properties such as strength, corrosion resistance, and temperature resistance, allowing them to have a wide range of applications across industries. From construction and automotive to aerospace and medical sectors, stainless steel billets play a vital role in manufacturing critical components and equipment.
Q:What is the impact of impurities on the quality of steel billets?
The presence of impurities in steel billets can significantly impact their quality. Impurities can weaken the structural integrity of the steel, reduce its toughness, and make it more prone to cracking or failure. They can also affect the steel's ability to resist corrosion, resulting in reduced durability and lifespan. Additionally, impurities can interfere with the steel's ability to be machined or welded, limiting its usability in various industries. Therefore, controlling and minimizing impurities in steel billets is crucial to ensure high-quality and reliable end products.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords