• Hot Rolled Square Steel Billet 3SP Standard 195mm System 1
  • Hot Rolled Square Steel Billet 3SP Standard 195mm System 2
  • Hot Rolled Square Steel Billet 3SP Standard 195mm System 3
  • Hot Rolled Square Steel Billet 3SP Standard 195mm System 4
  • Hot Rolled Square Steel Billet 3SP Standard 195mm System 5
  • Hot Rolled Square Steel Billet 3SP Standard 195mm System 6
Hot Rolled Square Steel Billet 3SP Standard 195mm

Hot Rolled Square Steel Billet 3SP Standard 195mm

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
2000 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Hot Rolled Square Steel Billet 3SP Standard 195mm  

 Hot Rolled Square Steel Billet 3SP Standard 195mm

Description of Hot Rolled Square Steel Billet 3SP Standard 195mm  

PPGI is made by cold rolled steel sheet and galvanized steel sheets as baseplate,  through the surface pretreatment (degreasing, cleaning, chemical conversion processing), coated by the method of continuous coatings (roller coating method), 

and after roasting and cooling. Zinc coating: Z60, Z80, Z100, Z120, Z180, Z275, G30, G60, G90
Alu-zinc coating: AZ60, AZ80, AZ100, AZ120, AZ180, G30, G60, G90 

 

Hot Rolled Square Steel Billet 3SP Standard 195mm

Main Feature of Hot Rolled Square Steel Billet 3SP Standard 195mm  

1) Excellent corrosion resistance: The zinc layer provides a good protection of Pre-painted Galvanizeed Steel Sheet.
2) High heat resistance: The reflective surface of the material aids in efficiently reflecting the sunlight away and in turn reducing the amount of heat transmitted. The thermal reflectivity converts into energy savings.
3) Aesthetics: Pre-Painted Galvanized steel sheet is available in plethora of patterns and multiple sizes as per the requirements that given by our customers.
4) Versatility: can be used in the various areas.
Standard seaworthy export packing: 3 layers of packing, inside is kraft paper, water plastic film is in the middle and outside GI steel sheet to be covered by steel strips with lock, with inner coil sleeve.

 

Applications of Hot Rolled Square Steel Billet 3SP Standard 195mm 

1) Automotive bodies: filters, fuel tanks, etc.

2) Construction materials: roofings, welding pipes,

3) Electric and electronic appliances: computer cans, etc.

4) Steel cans: containers, etc.

5) Steel furniture: washing machines, refrigerators, microwaves, etc.

6) Drums

7) Office equipment: printer, recorders, etc.

8) Motors and transformers

 Hot Rolled Square Steel Billet 3SP Standard 195mm

Specifications of Hot Rolled Square Steel Billet 3SP Standard 195mm  

Classified symbolYield Point Minimum N/mm2Tensile Strength MinimumElongation Minimum %Application
N/mm2Nominal Thickness mm (t)
JISYogic
0.25-0.40.4-0.60.6-1.01.0-1.6
G3312specification
CGCCCGCC-205-270-20-21-24-24Commercial
CGCDCGCD---270---273132Drawing
---CG34024534020202020Structural
CGC400CG40029540016171818Structural
CGC440CG44033544014151618Structural
CGC490CG49036549012131416Structural
CGC570CG570560570------------Structural









ASTM DesignationYield Point MinimumTensile Strength MinimumElongation Minimum %Application
Q/BQB 445-2004(China standard)ASM A653/A653MJISG 3312
ksi(MPa)ksi(MPa)
TDC51D+Z(CS TYPE A+Z)CGCC
A653(M)-99 CS TYPE A,B,C---------Commercial
TDC52D+Z
CGCD
A653(M)-99 FS---------Lock Forming
TS250GD+Z(G250+Z)-
A653(M)-99 DS---------Drawing
TS300GS+Z(G300+Z)CGC 400
A653(M)-99 SS Grade33(230)33(230)45(310)20Structural
TS350GD+Z(G350+Z)CGC490
A653(M)-99 SS Grade37(255)37(255)52(360)18Structural
TS550GD+Z(G550+Z)CGC570
A653(M)-99 SS Grade40(275)40(275)55(380)16Structural



A653(M)-99 SS Grade50(345)50(345)65(450)12Structural



A653(M)-99 SS Grade80(550)80(550)82(570)---Structural



FAQ of Hot Rolled Square Steel Billet 3SP Standard 195mm  

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  1, ISO, BV, CE, SGS approved.
  2, Competitive price and quality. 
  3, Efficient service team online for 24 hours. 
  4, Smooth production ability(50000tons/month) .
  5, quick delivery and standard exporting package. 
  6, Flexible payment with T/T, L/C, Paypal, Kunlun bank, etc.

Q:How are steel billets used in the production of rebar?
The production of rebar relies heavily on steel billets, which serve as a vital raw material. Rebar, or reinforcing bar, is a form of steel reinforcement that is utilized in concrete structures for added strength and stability. The process of manufacturing rebar commences with the creation of steel billets. Steel billets are solid, semi-finished steel products that typically exhibit a square or rectangular shape. They are generated through the casting procedure, in which molten steel is poured into molds and allowed to solidify. Once solidified, the billets are prepared for use in various applications, including the production of rebar. To produce rebar, the steel billets are initially heated to a high temperature within a furnace. This stage, known as hot rolling, renders the steel malleable and pliable. The heated billets are then passed through a sequence of rolling mills, where they are shaped into elongated, cylindrical rods with specific diameters. Throughout the rolling process, the steel billets endure immense pressure and heat, resulting in the alignment of the steel grains and an increase in strength. The rods are continuously rolled until they attain the desired dimensions and lengths. Once the rolling process is completed, the rods undergo cooling and are subsequently cut into standardized lengths for the purpose of being sold as rebar. The resulting rebar is a robust and enduring steel reinforcement that finds extensive usage in construction projects. It is commonly embedded within concrete structures, such as buildings, bridges, and highways, in order to enhance their capacity to bear weight and withstand tension and bending forces. The utilization of rebar assists in the prevention of cracking and failure of concrete structures, thereby ensuring their long-term durability and safety. In conclusion, steel billets play a critical role in the production of rebar as they undergo transformation via the hot rolling process, ultimately becoming elongated, cylindrical rods. These rods, once cooled and cut, serve as an indispensable reinforcement element within concrete structures, providing strength and stability to the overall construction.
Q:What are the main factors affecting the quality of steel billets?
There are several main factors that can significantly affect the quality of steel billets. These factors include the composition of the steel, the temperature and time of the heating process, the cooling rate, and the presence of impurities. Firstly, the composition of the steel plays a crucial role in determining its quality. The presence of certain elements such as carbon, manganese, and silicon can affect the mechanical properties of the steel, including its strength and hardness. The proper control and balance of these alloying elements are essential to ensure the desired quality of the steel billets. Secondly, the temperature and time of the heating process during the production of steel billets are critical factors. The heating process must be carefully controlled to achieve the optimal temperature for the desired transformation of the microstructure. Overheating or underheating can lead to the formation of undesirable phases or an inconsistent microstructure, which can negatively impact the quality of the billets. The cooling rate is another important factor affecting the quality of steel billets. The cooling process needs to be controlled to achieve the desired microstructure and mechanical properties. Too rapid cooling can result in the formation of brittle phases or residual stresses, while slow cooling can lead to coarse-grained structures with reduced strength. Furthermore, the presence of impurities in the steel can significantly affect its quality. Impurities such as sulfur, phosphorus, and non-metallic inclusions can decrease the mechanical properties and promote the formation of defects in the steel billets. Therefore, strict control of the raw materials and the implementation of effective refining techniques are necessary to minimize the presence of impurities. In conclusion, the main factors affecting the quality of steel billets are the composition of the steel, the temperature and time of the heating process, the cooling rate, and the presence of impurities. By carefully controlling and optimizing these factors, steel manufacturers can produce high-quality billets that meet the desired specifications and performance requirements.
Q:What are the different types of surface treatment methods used for steel billets?
There are several different types of surface treatment methods used for steel billets, each serving a specific purpose. Here are some of the commonly used methods: 1. Pickling: This method involves immersing the steel billets in an acidic solution, usually hydrochloric or sulfuric acid, to remove any scale or oxide layers on the surface. Pickling helps to improve the surface finish and prepares the steel for further processing. 2. Shot Blasting: Shot blasting involves propelling small metal or ceramic particles at high velocity onto the surface of the steel billets. This process helps to remove any rust, scale, or contaminants from the surface, resulting in a clean and smooth finish. 3. Grinding: Grinding is a mechanical process where abrasive wheels are used to remove any imperfections on the surface of the steel billets. This method can be used to achieve a specific surface roughness and is commonly employed when precision and accuracy are required. 4. Acid Etching: Acid etching is a chemical process that involves applying an acid solution to the surface of the steel billets. This method is used to create a controlled roughness or texture on the surface, which can enhance the adhesion of subsequent coatings or paints. 5. Galvanizing: Galvanizing is a popular surface treatment method where a layer of zinc is applied to the steel billets. This process provides excellent corrosion resistance, as the zinc acts as a sacrificial barrier that protects the underlying steel from oxidation. 6. Powder Coating: Powder coating is a technique where a dry powder is electrostatically applied to the surface of the steel billets. The coated billets are then heated, causing the powder to melt and form a protective layer. This method is known for its durability, resistance to corrosion, and ability to provide a wide range of decorative finishes. 7. Passivation: Passivation is a chemical process that aims to improve the corrosion resistance of stainless steel billets. It involves the removal of any iron contaminants from the surface and the formation of a passive oxide layer, which protects the steel from oxidation. These are just a few examples of the surface treatment methods used for steel billets. The choice of method depends on factors such as the desired surface finish, the intended application of the steel, and the level of corrosion resistance required.
Q:How are steel billets used in the production of shipbuilding materials?
Steel billets are an essential component in the production of shipbuilding materials. Shipbuilding requires materials that are strong, durable, and capable of withstanding harsh marine environments. Steel billets, which are semi-finished steel products, play a crucial role in meeting these requirements. Firstly, steel billets are used to produce various types of steel plates, which form the foundation of shipbuilding materials. These plates are cut and shaped according to the specific design requirements, such as hull plating, bulkheads, decks, and superstructures. Steel billets provide the raw material needed to create these plates, ensuring that they possess the necessary strength and structural integrity. Additionally, steel billets are utilized in the manufacturing of shipbuilding sections and profiles. These sections include beams, angles, channels, and other structural components that provide support and reinforcement to the ship's structure. These sections are often formed by heating the steel billets and then shaping them through processes like rolling, forging, or extrusion. This allows for the creation of custom-shaped sections that can be seamlessly integrated into the ship's construction. Moreover, steel billets are also used in the production of shipbuilding forgings, which are high-strength components that require exceptional mechanical properties. Forgings are crucial for critical ship parts like propeller shafts, rudder components, and engine parts. Steel billets are heated and then shaped using forging techniques to create these components, ensuring they possess the necessary strength, toughness, and resistance to fatigue. Overall, steel billets are a fundamental raw material used extensively in shipbuilding. They are transformed into various forms such as plates, sections, and forgings, which are then incorporated into the construction of ships. The use of steel billets ensures that shipbuilding materials meet the stringent requirements for strength, durability, and performance in marine environments.
Q:What are the different surface treatments for rust prevention in steel billets?
There are several surface treatments commonly used for rust prevention in steel billets. These include hot-dip galvanizing, electroplating, painting, and applying protective coatings such as zinc-rich primers or epoxy coatings. Each treatment offers varying levels of protection, with hot-dip galvanizing typically being the most effective and durable option.
Q:What are the main factors affecting the fatigue strength of steel billets?
The main factors affecting the fatigue strength of steel billets include the material composition and quality, the presence of surface defects or imperfections, the applied stress levels, the frequency or rate of the applied cyclic loading, and the temperature conditions during the fatigue process.
Q:How are steel billets used in the manufacturing of power transmission towers?
Steel billets are an integral component in the manufacturing of power transmission towers. These towers, which are used to support electrical power lines, require a strong and durable material to withstand the weight and stress of the overhead cables. Steel billets, which are essentially semi-finished steel products, serve as the raw material for the fabrication of power transmission towers. The billets are typically made of high-quality steel, which possesses excellent strength and structural properties. The manufacturing process begins with the selection and preparation of steel billets. These billets are heated to a specific temperature, known as the forging temperature, in a furnace. Once the billets reach the desired temperature, they are transferred to a rolling mill, where they are shaped and formed into the required sections for the power transmission towers. Using various rolling techniques, the heated steel billets are transformed into long, slender sections known as angles, channels, or I-beams. These sections are carefully crafted to provide the necessary structural integrity and load-bearing capacity required for power transmission towers. Once the steel sections are formed, they undergo further processes such as cutting, drilling, and welding to create the tower's components. These components include the legs, braces, cross arms, and other reinforcements that make up the tower structure. The steel billets used in the manufacturing of power transmission towers are crucial for ensuring the towers' strength, stability, and longevity. Steel's high strength-to-weight ratio makes it an ideal material for supporting the weight of the cables and withstanding external forces such as wind and ice loads. Additionally, steel's resilience and durability make it capable of withstanding harsh environmental conditions, including extreme temperatures and corrosive elements. In conclusion, steel billets are a fundamental material used in the manufacturing of power transmission towers. Through a series of heating, rolling, and fabrication processes, these billets are transformed into the various structural sections and components that make up the towers. The use of steel ensures that the power transmission towers possess the necessary strength, stability, and resilience to support the electrical power lines effectively.
Q:What are the different surface treatments for improved formability in steel billets?
Some of the different surface treatments for improved formability in steel billets include hot rolling, cold rolling, annealing, and pickling. These treatments help to enhance the plasticity and ductility of the steel, making it easier to shape and form into desired products.
Q:What is the difference between carbon three plants and carbon four plants?
Also known as C4 plants. Such as corn, sugar cane, sorghum, amaranth and so on.CO2 is the first product of the assimilation of photosynthetic carbon cycle in three carbon compounds 3- phosphoglycerate plants, known as carbon three plants (C3 plants), such as wheat, soybeans, cotton, tobacco, etc.. C3 plants have higher CO2 compensation points than C4 plants, so the survival rate of C3 plants is lower than that of C4 plants when the CO2 content is low.By contrast, the division of C3 plant cells is less definite than that of C4 plants, and CO2 uses less efficiently. To some extent, C3 plants may be considered as prokaryotes in plants, whereas C4 plants are more like eukaryotes".
Q:How is a steel billet made?
A steel billet is typically made through a process called continuous casting, which involves several steps. First, the raw materials for steel production, such as iron ore, coal, and limestone, are gathered and processed. These materials are then transformed into molten pig iron in a blast furnace. The molten pig iron is then transferred to a basic oxygen furnace or an electric arc furnace, where it undergoes further refining. In these furnaces, impurities such as carbon, sulfur, and phosphorus are removed, and alloying elements such as manganese, chromium, and nickel may be added to achieve desired properties. Once the molten steel is chemically balanced and refined, it is ready for casting. The steel is poured into a water-cooled copper mold, known as a continuous caster. As the molten steel flows into the mold, it solidifies and takes the shape of a long rectangular or square billet. During the casting process, water is circulated through the mold to rapidly cool the steel and facilitate solidification. This controlled cooling helps to ensure the billet has a consistent structure and desired mechanical properties. After solidification, the billet is cut into predetermined lengths using a torch or a shear. These billets can range in size, depending on their intended use, and may weigh several tons. Once cut, the billets can be further processed through rolling, forging, or other shaping methods to create various steel products such as bars, rods, tubes, or structural shapes. Overall, the production of a steel billet involves transforming raw materials into molten steel, refining it, and then casting it into a solid shape through continuous casting. The resulting billet serves as a starting point for the production of a wide range of steel products used in various industries.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords