• Grade S250GD-S550GD Galvanized Steel Coil System 1
  • Grade S250GD-S550GD Galvanized Steel Coil System 2
  • Grade S250GD-S550GD Galvanized Steel Coil System 3
  • Grade S250GD-S550GD Galvanized Steel Coil System 4
  • Grade S250GD-S550GD Galvanized Steel Coil System 5
  • Grade S250GD-S550GD Galvanized Steel Coil System 6
Grade S250GD-S550GD Galvanized Steel Coil

Grade S250GD-S550GD Galvanized Steel Coil

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
3 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Carbon Steel,Spring Steel,Bearing Steel,Gear Steel,Deformed Steel,Stainless Steel,Alloy Steel
Shape:
Steel Coil,Steel Sheet,Steel Wire Rod,Steel Flat Bar,Steel Square Bar,Steel Angle,Steel Round Bar,Steel Billets
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Thickness:
0.13-5.0mm
Width:
600-1570mm
Length:
in coils
Outer Diameter:
in coils
Net Weight:
10 m.t.
Packaging:
seaworthy packaging

Grade S250GD-S550GD Galvanized Steel Coil

 Specification of Grade S250GD-S550GD Galvanized Steel Coil

1. Galvanized Steel Coil    

    (1) Width: 600-1570mm

    (2) Thickness: 0.13-5.0mm

    (3) Grade: JIS G3302-SGCC-SGC570, SGCH (full hard-G550), SGHC-SGH540

                          EN10346-DX51D+Z, DX53D+Z, S250GD-S550GD

                         ASTM A653-CS-B, SS255-SS550

    (4) Zinc Coating: Z40g/m2~Z500g/m2 (both side total coating thickness)

2. Galvalume Steel Coil 

    (1) Width: 600~1500mm

    (2) Thickness: 0.15~2.30mm

    (3) Grade: JIS G3321-SGLCC, SGLC400-570, (G550)

                       EN10346-DX51D+AZ, DX53D+AZ, S250-S550

                      ASTM A792M CS-B, SS255-SS550

    (4) AZ Coating: AZ50~AZ185g/m2

3. Prepainted Galvanized Steel Coil (PPGI) 

    (1) Width: 600~1250mm

    (2) Thickness: 0.19~1.50mm

    (3) Grade: JIS G3312-CGCC, CGC340-570, (G550)

                      ASTM A755M CS-B, SS255-SS550

    (4) Zinc Coating: Z40g/m2~Z500g/m2 (both side total coating thickness)

4. Prepainted Galvanized Steel Coil (PPGL)

    (1) Width: 600~1250mm

    (2) Thickness: 0.20~1.50mm

    (3) Grade: JIS G3322-CGLCC, CGLC340-570, (G550)

                      ASTM A755M CS-B, SS255-SS550

    (4) AZ Coating: AZ50~AZ185g/m2 (both side total coating thickness)

5. Cold Rolled Steel Coil (Soft) (for further information, pls click the product name)

    (1) Width: 600~1570mm

    (2) Thickness: 0.13~2.50mm

    (3) Grade: JIS G3141-SPCC-SD, SPCD-SD, SPEC-SD

                      JIS G3135-SPFC 340/390/440

                      EN10130-DC01, DC03, DC04

                      SAE1006, SAE1008

                      ASTM A424-TypeⅡ

6. Cold Rolled Steel Coil (Full Hard) (for further information, pls click the product name)

    (1) Width: 600~1570mm

    (2) Thickness: 0.13~2.50mm

    (3) Grade: JIS G3141-SPCC-1B, SPCC-1D

7. Hot Rolled Steel Coil 

    (1) Width: 1000~1524mm

    (2) Thickness: 1.20~16.5mm, other thickness can be negotiation

    (3) Grade: JIS G3101-SS400, JIS G3132-SPHT1/2/3, ASTM A36, Q195, Q235 etc.

 

Company Introduction of the Grade S250GD-S550GD Galvanized Steel Coil

CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.

With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.

Grade S250GD-S550GD Galvanized Steel Coil

Grade S250GD-S550GD Galvanized Steel Coil

 

Packaging & Delivery of the Grade S250GD-S550GD Galvanized Steel Coil

Packaging Detail

Sea worthy packing /as per customer's packing instruction

Delivery Detail

15 ~ 40 days after receiving the deposit

 

Products Show:

Grade S250GD-S550GD Galvanized Steel Coil

FAQ:   

Are you a trading company or manufacturer?

Manufacturer

What’s the MOQ?

3 metric ton

What’s your delivery time? 

15-35 days after downpayment received

Do you Accept OEM service?

Yes

what’s your delivery terms?

FOB/CFR/CIF

What's the Payment Terms?

30% as deposit,70% before shipment by T/T

Western Union acceptable for small amount.

L/C acceptable for large amount.

Scrow ,Paybal,Alipay are also ok

Why  choose  us?

Chose happens because of quality, then price, We can give you both.

Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals.

What's your available port of Shipment?

Main Port, China

What’s your featured  services?

Our service formula: good quality+ good price+ good service=customer's trust

 

Where are your Market?

Covering more than 160 countries in the world

 

Q:How does the hardness of special steel affect its machinability?
The machinability of special steel is significantly influenced by its hardness. Generally, as the hardness of the steel increases, its machinability decreases. Machinability refers to how easily a material can be machined or shaped using various machining processes like cutting, drilling, or milling. Hardness denotes a material's resistance to indentation or scratching. It is typically measured using the Rockwell hardness scale or the Brinell hardness test. Special steel, known for its high strength and durability, usually possesses a higher hardness compared to other steel types. When machining special steel, encountering a harder material presents challenges for multiple reasons. Firstly, cutting harder materials requires greater cutting forces and generates more heat during the machining process, making them more difficult to cut. Consequently, this leads to increased tool wear and reduced tool life, resulting in higher production costs. Secondly, hard steel tends to have lower ductility and toughness, making it more susceptible to cracking or chipping during machining. As a consequence, poor surface finish, dimensional inaccuracies, and even component failure can occur. Furthermore, increased hardness in special steel also impacts chip formation. Harder materials tend to produce shorter and more segmented chips, which can cause problems with chip evacuation and tool clogging. This further hampers the machining process and affects overall productivity. To enhance the machinability of hard special steel, several strategies can be employed. Choosing appropriate cutting tools with specific geometries and coatings designed for hard materials is crucial. Additionally, optimizing cutting parameters such as cutting speed, feed rate, and depth of cut can help mitigate the negative effects of hardness on machinability. In conclusion, the hardness of special steel directly affects its machinability. As hardness increases, machinability decreases due to higher cutting forces, increased tool wear, reduced ductility, and chip formation challenges. However, by employing proper tool selection and optimizing cutting parameters, the machinability of hard special steel can be improved, enabling efficient and cost-effective machining processes.
Q:What are the requirements for special steel used in automotive parts manufacturing?
The requirements for special steel used in automotive parts manufacturing are specific and crucial to ensure superior performance, safety, and durability of the vehicles. Here are some of the key requirements for special steel used in automotive parts manufacturing: 1. Strength and Hardness: Special steel used in automotive parts needs to have high strength and hardness to withstand the extreme stresses and loads that automotive components experience. This ensures the parts can endure heavy usage, resist deformation, and prevent failure under demanding conditions. 2. Ductility and Toughness: While being strong and hard, special steel must also possess good ductility and toughness. Ductility allows the steel to be formed and shaped into various intricate automotive parts, while toughness ensures that the parts can absorb energy and resist fracture or cracking upon impact. 3. Corrosion Resistance: Automotive parts are constantly exposed to various environmental conditions, including moisture, humidity, and road salts. Special steel used in automotive parts must exhibit excellent corrosion resistance to prevent rust and deterioration, thereby increasing the longevity and reliability of the parts. 4. Weldability: As automotive parts are often assembled through welding processes, it is essential for special steel to have good weldability. This allows for efficient and secure joining of different components, ensuring structural integrity and minimizing the risk of weld defects. 5. Heat Resistance: Special steel used in automotive parts manufacturing should have sufficient heat resistance to withstand high temperatures generated during engine operation, friction, or other thermal processes. This ensures that the steel maintains its mechanical properties even under extreme heat conditions, preventing premature failure or deformation. 6. Fatigue Strength: Automotive parts are subjected to repeated loading and unloading cycles, leading to fatigue failure if the steel does not have adequate fatigue strength. Special steel should possess high fatigue strength to withstand cyclic loading and resist fatigue cracks, enhancing the durability and reliability of the parts. 7. Dimensional Stability: Automotive parts need to maintain their shape and dimensions over time to ensure proper fit and functionality. Special steel used in manufacturing should exhibit dimensional stability, minimizing any warping or distortion during heat treatment or operational conditions. 8. Cost-effectiveness: While meeting the above requirements, special steel should also be cost-effective for automotive parts manufacturing. This means that the steel should be reasonably priced, readily available, and offer a good balance between cost and performance. Meeting these requirements is crucial for manufacturers to produce high-quality automotive parts that meet industry standards, perform optimally, and contribute to the overall safety and performance of vehicles.
Q:What are the different molding grades of special steel?
The different molding grades of special steel include tool steel, stainless steel, high-speed steel, and alloy steel.
Q:Can special steel be used in the semiconductor industry?
Yes, special steel can be used in the semiconductor industry. Special steel, such as stainless steel, is often used in the semiconductor industry due to its excellent corrosion resistance, high temperature resistance, and low contamination properties. It is commonly used in various components and equipment used for semiconductor fabrication and processing.
Q:How is special steel used in the production of turbine blades?
Special steel is used in the production of turbine blades due to its exceptional strength, heat resistance, and corrosion resistance properties. These blades have to withstand high temperatures, extreme pressures, and rotational forces, making special steel an ideal material choice. Its exceptional qualities ensure the blades can efficiently convert the energy of steam or gas into mechanical energy, enabling turbines to generate power in various applications such as power plants, aircraft engines, and gas turbines.
Q:How does special steel perform in surface hardening applications?
Special steel performs exceptionally well in surface hardening applications. Due to its unique composition and properties, it can undergo various surface hardening processes like carburizing or nitriding, resulting in enhanced surface hardness, wear resistance, and overall durability. This makes special steel an ideal choice for applications where high strength and improved surface properties are required, such as in automotive components, cutting tools, or industrial machinery.
Q:How does special steel perform in high-temperature environments?
Special steel performs exceptionally well in high-temperature environments. It has a high melting point, excellent resistance to heat and thermal shock, and can retain its strength and hardness even at elevated temperatures. This makes it highly suitable for applications such as aerospace, power generation, and automotive industries, where materials are exposed to extreme heat and require exceptional performance and durability.
Q:How is wear-resistant steel used in mining equipment?
Wear-resistant steel is commonly used in mining equipment to enhance their durability and longevity. It is specifically designed to withstand the harsh conditions and abrasive environments typically found in mining operations. Components such as buckets, blades, chutes, crushers, and screens are often made from wear-resistant steel to prevent excessive wear and damage caused by rocks, minerals, and other abrasive materials. This steel's high hardness and toughness properties ensure that the equipment can withstand the constant impact and abrasion, reducing maintenance needs and extending the equipment's lifespan.
Q:How does special steel contribute to the aerospace fuel efficiency?
Special steel contributes to aerospace fuel efficiency in several ways. Firstly, special steel alloys are used in the manufacturing of aircraft engines, which are designed to be lightweight and durable. The use of these alloys helps reduce the overall weight of the engine, resulting in less fuel consumption during flight. Additionally, special steel is also used in the construction of various aircraft components, such as wings and landing gear. By utilizing stronger and lighter steel materials, the overall weight of the aircraft is reduced, leading to improved fuel efficiency. Moreover, special steel's high temperature resistance properties enable it to withstand the extreme heat generated by engines, allowing for more efficient combustion and reduced energy loss. Overall, the use of special steel in aerospace applications significantly contributes to fuel efficiency by reducing weight, improving durability, and optimizing engine performance.
Q:Can special steel be used for aerospace engine components?
Yes, special steel can be used for aerospace engine components.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords