• Spring Steel Strip System 1
  • Spring Steel Strip System 2
  • Spring Steel Strip System 3
Spring Steel Strip

Spring Steel Strip

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
50MT m.t.
Supply Capability:
600000TONS/YEAR m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Spring Steel:

Spring steel is divided into two types, one is alloy spring steel, and other one is carbon spring steel.

Alloy spring steel is a type that is used for manufacturing springs and other elastic parts. Spring steel should have high elastic limit and ratio of yield strength and tensile strength to make sure that the springs obtain enough power of elastic deformation and can bear much load.

Types of alloy spring steel: Si-Mn spring steel, Si-Cr spring steel, Cr-Mn Spring steel, Cr-V spring steel and so on.

 

Specification of Spring Steel Strip

-Material: 50CrVA

-Standard: GB/T 1222-2007

-Type: Spring Steel

 

Corresponding Steel Grade for Reference:

CHN, GB

JPN, JIS

GER, DIN

50CrVA

SUP10

50CrV4

GBR, BS

FRA,FN

735A51

50CV4

 

Chemical Composition:

C

Si

Mn

0.46~0.54

0.17~0.37

0.50~0.80

S

P

Cr

≤0.030

≤0.030

0.80~1.10

Ni

Cu

V

≤0.35

≤0.25

0.10~0.20

 

Mechanical Properties:

-Tensile Strength σb (MPa): ≥1274 (130)

-Yield Strength σs (MPa): ≥1127 (115)

-Elongation δ5 (%):≥10

-Percentage reduction of area: ψ (%): ≥40

-Hardness:

1, Hot rolled, ≤321HB

2, Cold drawn + Heat treatment: ≤321HB

-Norm of heat treatment:

1, Quenching: 850℃±20℃.

2, Cooled by oil.

3, Tempering: 500℃±50℃.

 

Usage/Applications of Spring Steel Strip

-Mechanical Properties are good. 50CrVA have high hardenability. The element V reduces thermal sensitivity and improves the strength and toughness. The fatigue strength and yield point are high but the weld ability is bad.

-50CrVA is a nice material of spring. Usually it’s used as valve spring, piston spring and secure valve spring with big section that can bear much load. The working temperature is below 300

 

Packaging & Delivery of Spring Steel Strip:

-Packing Detail: The products will be well packed.

-Marks:

1, Tag marks. To show customers the specifications of products, company name and logo and other information required by customers.

2, Color marks. It’s easy for customers to distinguish them from other products at destination port.

-Delivery Detail: 30~45 working days after receive buyer’s T.T. or L/C.

 

Payment:

-Theoretical weight/Actual weight.

-FOB, CFR or CIF.

-Terms of payment: T.T. or L/C at sight.

 

Photos of Spring Steel Strip:

Spring Steel Strip

Spring Steel Strip

Q:What are the properties of high-strength stainless steel?
High-strength stainless steel possesses excellent corrosion resistance, high tensile strength, and durability. It is resistant to high temperatures, making it suitable for use in extreme environments. Additionally, it offers good formability and weldability, allowing for various fabrication processes.
Q:What are the properties of copper alloys?
Copper alloys have various properties such as high electrical and thermal conductivity, excellent corrosion resistance, good strength and ductility, as well as a pleasing aesthetic appearance. They are also known for their antimicrobial properties and are commonly used in electrical wiring, plumbing systems, and various industrial applications.
Q:How does mold steel resist wear and erosion?
Mold steel resists wear and erosion due to its high hardness and toughness properties. It is specifically designed to withstand the abrasive forces and friction that occur during molding processes. Additionally, mold steel is often heat-treated to further enhance its resistance against wear and erosion, making it a durable and long-lasting material for mold manufacturing.
Q:What are the potential health hazards associated with working with special steel?
The potential health hazards associated with working with special steel include exposure to toxic fumes and dust, which can lead to respiratory problems such as asthma or lung damage. Skin contact with certain types of special steel may cause irritation or allergic reactions. Additionally, the physical nature of the work, such as heavy lifting or repetitive motions, can contribute to musculoskeletal disorders and injuries. Proper safety measures, such as wearing appropriate protective equipment and ensuring proper ventilation, are crucial in minimizing these health risks.
Q:How does special steel perform in high-stress environments?
Special steel performs exceptionally well in high-stress environments due to its unique properties. Its enhanced strength, durability, and resistance to corrosion make it highly reliable and capable of withstanding extreme conditions. This allows it to maintain its structural integrity and prevent deformation or failure, making it ideal for use in demanding industries like aerospace, oil and gas, and automotive.
Q:How does special steel contribute to the aerospace defense machinery industry?
The aerospace defense machinery industry heavily depends on special steel to meet the demanding requirements of strength, durability, and performance. Special steel alloys are essential for various components and systems, playing a critical role in ensuring the structural integrity, longevity, and optimal functioning of aerospace defense machinery. To begin with, aircraft structures like wings, fuselage, and landing gear are manufactured using special steel alloys. These components need materials that can withstand extreme forces, temperature fluctuations, and corrosive environments. Special steel alloys possess unique properties, including a high strength-to-weight ratio, excellent fatigue resistance, and resistance to corrosion, making them ideal for these purposes. Furthermore, special steel is crucial for the production of engine components like turbine blades, shafts, and casings. These parts operate under extreme conditions, such as high temperatures, pressures, and rotational speeds. Special steel alloys with high heat resistance, excellent mechanical properties, and good creep resistance are essential for ensuring optimal engine performance, fuel efficiency, and reliability. In addition to structural and engine components, special steel is used in the manufacturing of various defense systems, including missile guidance systems, radar systems, and communication equipment. These systems require materials with electromagnetic compatibility, high strength, and resistance to vibration and shock. Special steel alloys with specific electromagnetic properties, like low magnetic permeability or high electrical conductivity, contribute to the efficient functioning of these systems. Moreover, special steel is heavily relied upon in the production of precision tools, cutting blades, and molds used in the manufacturing process. These tools must possess high hardness, wear resistance, and dimensional stability to ensure accurate and efficient processing of complex components. Overall, special steel is a crucial aspect of the aerospace defense machinery industry, providing the necessary strength, durability, and performance required for the demanding and often harsh operating conditions in this sector. The unique properties of special steel alloys contribute to the development of advanced and reliable aerospace defense machinery, enhancing the capabilities and safety of military and defense operations.
Q:What are the different surface treatments used for special steel?
There are several different surface treatments that can be used for special steel, depending on the specific requirements and desired properties. Some of the commonly used surface treatments for special steel include: 1. Nitriding: This process involves diffusing nitrogen into the surface of the steel, resulting in a hardened layer. Nitriding improves the surface hardness, wear resistance, and fatigue strength of the steel. 2. Carburizing: Carburizing involves introducing carbon into the surface of the steel, forming a hard and wear-resistant layer. This process enhances the surface hardness and improves the steel's resistance to wear and fatigue. 3. Coating: Coating is a popular surface treatment technique where a thin layer of protective material is applied to the steel surface. Coatings can include various materials like zinc, chrome, or ceramic, which provide corrosion resistance, improved aesthetics, and enhanced durability. 4. Shot peening: Shot peening is a mechanical surface treatment technique that involves bombarding the steel surface with small metallic or ceramic particles. This process induces compressive stresses in the material, enhancing its fatigue strength and resistance to cracking. 5. Electroplating: Electroplating is a process where a thin layer of metal is deposited onto the steel surface using an electrical current. This treatment provides improved corrosion resistance and can also enhance the appearance of the steel. 6. Passivation: Passivation involves treating the steel surface with a chemical solution to remove impurities and create a protective oxide layer. This process improves the corrosion resistance and enhances the surface finish of the steel. 7. Anodizing: Anodizing is a surface treatment commonly used for aluminum but can also be applied to special steel. It involves creating an oxide layer on the steel surface through an electrolytic process. Anodizing improves corrosion resistance, provides an aesthetic finish, and can also be used for coloring the steel. These different surface treatments offer various benefits and are chosen based on the specific application requirements, such as corrosion resistance, wear resistance, hardness, aesthetics, or improved mechanical properties.
Q:Can special steel be used in the manufacturing of precision instruments?
Indeed, precision instruments can benefit from the utilization of special steel. Special steel encompasses a range of steel types that have been purposefully crafted and processed to possess specific attributes, such as heightened strength, hardness, resistance to corrosion, and thermal stability. These unique qualities render special steel highly suitable for applications necessitating precision and accuracy, such as precision instrument manufacturing. Precision instruments, such as surgical tools, measuring devices, optical instruments, and scientific equipment, necessitate materials capable of retaining dimensional stability and enduring extreme conditions. Special steels, such as stainless steel, tool steel, and high-speed steel, provide exceptional mechanical properties, including remarkable tensile strength, resistance to wear, and dimensional stability. Consequently, these kinds of steel are well-suited for the production of precision instruments. Moreover, special steel can be engineered to possess specific characteristics, such as low magnetic permeability or excellent resistance to temperature fluctuations. These attributes prove particularly vital in precision instruments, as magnetic interference or temperature variations have the potential to impact their performance. To summarize, special steel can indeed be employed in the manufacturing of precision instruments due to its exceptional mechanical properties, dimensional stability, and ability to withstand harsh conditions. Its versatility enables the production of precision instruments of superior quality, fulfilling the stringent requirements of various industries, including the medical, scientific, and engineering sectors.
Q:How does special steel perform in high-vibration applications?
Special steel performs exceptionally well in high-vibration applications due to its superior strength, durability, and resistance to fatigue. These properties enable it to withstand intense vibrations without compromising its structural integrity, resulting in enhanced performance and extended service life in such demanding conditions.
Q:What are the physical properties of special steel?
Special steel is a type of steel that possesses unique physical properties compared to regular steel. These properties may vary depending on the specific composition and processing techniques used. However, some common physical properties of special steel include high strength, hardness, and durability. Special steel is often designed to withstand extreme conditions such as high temperatures, pressure, and corrosive environments. It may also exhibit excellent wear resistance, making it suitable for applications involving heavy machinery or cutting tools. Furthermore, special steel can have superior electrical and thermal conductivity, as well as good magnetic properties. Overall, the physical properties of special steel make it highly versatile and valuable in various industries such as automotive, aerospace, construction, and energy.
REDMETAL,a well-known enterprise specializing in the production and sales of spring steel and bearing steel. Since the establishment of our company, we have been aimed to provide the customers with qualify and cheap product and the satisfatory service.

1. Manufacturer Overview

Location Jiangsu, China
Year Established 1990
Annual Output Value Above US$ 20 Million
Main Markets Mid East; Eastern Europe; North America
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port Shanghai
Export Percentage 20% - 30%
No.of Employees in Trade Department 21-50 People
Language Spoken: English; Chinese
b)Factory Information  
Factory Size: Above 100,000 square meters
No. of Production Lines 1
Contract Manufacturing OEM Service Offered;
Product Price Range High; Average

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords