• Japanese Standard Bearing Steel System 1
  • Japanese Standard Bearing Steel System 2
  • Japanese Standard Bearing Steel System 3
Japanese Standard Bearing Steel

Japanese Standard Bearing Steel

Ref Price:
get latest price
Loading Port:
Guangzhou
Payment Terms:
TT or LC
Min Order Qty:
25MT m.t.
Supply Capability:
600000 Tons/Year m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Specifications of Japanese Standard Bearing Steel

 

Material

SUJ2

Chemical Composition

Mechanical Properties(In Quenched & Tempered State)

C

0.95-1.05

Hardness

HRC≈67 

Si

0.15-0.35

HRC61-66 

Mn

0.25-0.45

HRC62-66 

Cr

1.40-1.65

--

Mo

≤0.10

--

P

≤0.025

HB170-207 

S

≤0.025

HB207-229 

Cu

≤0.25

HB270-390 

Ni+Cu

≤0.50

HB229-285 

Dimension: Thickness: 20mm-1000mm, Length: 500mm-6000mm

Technique: Hot rolled, cold drawn, forged

Surface treatment: Black, grinding, bright, polish

Type: Alloy Steel Bar

Documents required: Commercial invoice; Packing list; Bill of lading; Certificate of origin and others that the target market needs.

 

 

Usage and Applications of Japanese Standard Bearing Steel

High Quality Bearing steel is used for manufacturing ball, roller bearing steel and rings. Bearing in work is under great pressure and friction, so have high demands bearing steel and hardness and resistance, and high elastic limit.

Bearing steels are used for ball and roller bearing applications and are comprised of low carbon steels and high carbon through harden able steel.

For example, bearing ring, steel rolling mill, machinery, 100Cr6 bearing steel ball is widely used in high-speed and low-noise bearing, bicycle, motorcycle, automobile, bags electronically.

 Performance of Bearing Steel  

 

 

 

 Function of Bearing Steel

 

Packaging & Delivery of Japanese Standard Bearing Steel

Packaging Detail: Standard seaworthy packing or as customer required.

Delivery Detail: 45 days

Trade terms: FOB, CFR, CIF

MOQ: 25 tons or at customer's demands

Weight: Theprice invoicing on theoretical weight basis or actual weight basis depends on customer’s request.

Shipment: The shipment of bulk break or container is depends on customer’s request.

 

 

Other equivalent steel materials of Japanese Standard Bearing Steel

 

USA

Japanese

Germany

British

France

ASTM&AISI&SAE

JIS

EN DIN

EN BS

EN NF

52100

SUj2

100Cr6

100Cr6

100Cr6

1.2067

     1.2067

1.2067

 

 

Characteristics of Japanese Standard Bearing Steel

1. The technical workers we employed are the ones with many years’ working experience, who know the technology procedures very well.

2. We will strictly inspect our production that we sold according to the customer’s request.

3. Our steel reaches international quality standards. Besides, our company is equipped with large-sized vertical saw machines, horizontal saw machines, milling machines, grinding machines and other advanced equipment. All our products are carried out hardness tests, such as the ultrasonic flaw detection before shipment. Therefore, there is no quality problem. With more competitive price than other suppliers, our steel has good sales in the markets of North America, South America, East Europe, Southeast Asia, Africa, Oceania, the Middle East, East Asia and West Europe.

4. We can accept L/C usance or L/C at sight.

5. Quality should be in conformity with the specification of the manufacturer.  Quantity and packing conditions should be in conformity with the term in this contract.

Q:What are the main factors affecting the toughness of special steel?
The main factors affecting the toughness of special steel are its composition, microstructure, and heat treatment. Composition plays a crucial role in determining the toughness of special steel. The presence of certain alloying elements such as chromium, molybdenum, nickel, and vanadium can enhance the toughness of steel. These elements form solid solutions or precipitates in the steel matrix, which impede the propagation of cracks and improve the material's resistance to fracture. Microstructure also plays a significant role in determining the toughness of special steel. The size, shape, and distribution of the various phases in the steel, such as ferrite, pearlite, bainite, and martensite, affect its toughness. Fine-grained microstructures typically exhibit higher toughness due to their increased resistance to crack propagation. Heat treatment is another essential factor in controlling the toughness of special steel. The process of heating and cooling the steel can modify its microstructure, altering its toughness. Quenching, tempering, and annealing are common heat treatments used to improve the toughness of steel. Quenching and tempering, for example, can produce a microstructure with a desirable balance of hardness and toughness. Other factors that can affect the toughness of special steel include the presence of impurities, non-metallic inclusions, and the presence of residual stresses. Impurities and inclusions can act as stress concentrators and reduce the toughness of the steel. Residual stresses, which can arise during manufacturing processes, can also impact the toughness of the material by creating regions of high stress that can initiate crack formation. In summary, the composition, microstructure, heat treatment, presence of impurities and inclusions, and residual stresses are the main factors affecting the toughness of special steel. Understanding and controlling these factors are crucial for optimizing the toughness and performance of special steels in various applications.
Q:What is the significance of phosphorus in special steel?
Phosphorus plays a crucial role in special steel as it enhances its strength, hardness, and machinability. It acts as a grain refiner, reducing the grain size of the steel and improving its toughness. Additionally, phosphorus increases the steel's corrosion resistance and decreases its brittleness, making it more suitable for various industrial applications. Overall, phosphorus is a significant element in special steel, contributing to its overall performance and quality.
Q:How does special steel compare to other materials, such as aluminum or titanium?
Special steel is known for its exceptional strength, durability, and versatility, making it a preferred choice in various industries. When compared to other materials like aluminum or titanium, special steel often offers superior mechanical properties, including higher tensile strength, hardness, and wear resistance. It also generally has better thermal conductivity and is more resistant to corrosion. However, aluminum and titanium have their own advantages, such as being lighter in weight and having better overall corrosion resistance. Ultimately, the choice between special steel, aluminum, or titanium depends on the specific application, considering factors like strength requirements, weight limitations, cost-effectiveness, and environmental conditions.
Q:Can special steel be used in the chemical processing industry?
Yes, special steel can be used in the chemical processing industry. Special steel alloys are specifically designed to withstand the harsh conditions of chemical processing, including exposure to corrosive chemicals, high temperatures, and pressure. These steels have excellent resistance to corrosion and can maintain their mechanical properties even in extreme environments. Therefore, they are commonly utilized in the construction of chemical reactors, pipelines, storage tanks, and various other equipment used in the chemical processing industry.
Q:What are the main characteristics of heat-resistant steel?
Heat-resistant steel, also known as high-temperature steel, is a type of alloy that possesses specific properties that enable it to withstand extreme temperatures without losing its mechanical strength and integrity. The main characteristics of heat-resistant steel include: 1. High resistance to thermal fatigue: Heat-resistant steel is designed to withstand cyclic heating and cooling without developing cracks or fractures. This property allows it to maintain its structural integrity even in environments with rapid temperature fluctuations. 2. Excellent creep resistance: Creep is the gradual deformation that occurs in a material when it is exposed to high temperatures over an extended period. Heat-resistant steel exhibits exceptional resistance to creep, ensuring that it retains its shape and strength even under prolonged heat exposure. 3. Retention of mechanical properties at elevated temperatures: Unlike regular steel, which can experience a significant reduction in strength and hardness at high temperatures, heat-resistant steel retains its mechanical properties even at extreme temperatures. This characteristic makes it suitable for applications in industries such as aerospace, power generation, and oil and gas. 4. Oxidation and corrosion resistance: Heat-resistant steel is highly resistant to oxidation and corrosion at elevated temperatures. It forms a protective oxide layer on its surface, preventing the underlying material from being attacked by oxygen or other corrosive elements. This property enhances the longevity and reliability of components made from heat-resistant steel. 5. High thermal conductivity: Heat-resistant steel possesses excellent thermal conductivity, allowing it to efficiently transfer heat away from its surface. This feature is particularly beneficial in applications where heat dissipation is critical, such as in heat exchangers and furnace components. 6. Low thermal expansion: Heat-resistant steel has a relatively low coefficient of thermal expansion, meaning it expands and contracts minimally when subjected to temperature changes. This characteristic ensures dimensional stability and reduces the risk of warping or distortion under thermal stress. Overall, the main characteristics of heat-resistant steel make it an ideal material for applications that involve exposure to high temperatures, such as furnace components, exhaust systems, gas turbines, and heat exchangers. Its ability to withstand extreme heat without compromising its structural integrity and mechanical properties make it a crucial material in industries where temperature resistance is paramount.
Q:What are the main applications of special steel in the shipbuilding industry?
Special steel is widely used in the shipbuilding industry for various applications. Some of the main applications include the construction of ship hulls, decks, and superstructures, as well as the manufacturing of critical components such as propeller shafts, rudders, and marine engines. The high strength, corrosion resistance, and toughness of special steel make it ideal for withstanding the harsh marine environment and ensuring the safety and durability of ships.
Q:What are the safety considerations when handling special steel products?
Special steel products require careful attention to safety. Firstly, wearing appropriate personal protective equipment (PPE) is crucial. Gloves, safety glasses, and steel-toed boots should be worn to safeguard against potential injuries from sharp edges, heavy weight, or flying debris. Secondly, it is important to take note of the weight and size of the special steel products. Mechanical lifting equipment or assistance from others may be necessary to prevent strain or injury when dealing with large or heavy items. Furthermore, a thorough inspection of the special steel products should be conducted prior to handling. This involves checking for cracks, fractures, or any other structural issues that could compromise their integrity. If any defects are discovered, they must be reported to the appropriate personnel and the products should not be used until they are deemed safe. In addition, specific handling techniques or tools may be required for special steel products. Strict adherence to the manufacturer's guidelines and instructions is crucial to ensure safe handling. This may involve utilizing specialized lifting equipment, clamps, or supports to prevent accidents or damage. Lastly, proper training and knowledge are essential for safe handling of special steel products. This includes understanding the weight limits of lifting equipment, knowing how to properly secure and stabilize the products, and being aware of any potential hazards or risks associated with the specific type of steel being handled. By adhering to these safety considerations, the risk of accidents, injuries, or damage can be minimized when dealing with special steel products.
Q:How does special steel ensure product reliability?
Special steel ensures product reliability through its unique properties and manufacturing processes. Special steel is designed to have exceptional strength, durability, and resistance to corrosion, wear, and fatigue. These enhanced properties make it suitable for various critical applications where reliability is paramount, such as in automotive, aerospace, energy, and infrastructure industries. Special steel undergoes rigorous quality control measures during its production to ensure consistency and adherence to specific standards. This helps in minimizing variations and defects, ensuring that the final product meets the required specifications and performs reliably under challenging conditions. Additionally, special steel's ability to be tailored and customized enables manufacturers to create products that are precisely engineered to withstand specific operating environments, further enhancing their reliability.
Q:How does special steel contribute to the manufacturing of bearings?
Special steel plays a crucial role in the manufacturing of bearings due to its unique properties and characteristics. Bearings are mechanical components that facilitate smooth rotation or movement between two surfaces. Special steel, also known as bearing steel, is specifically designed to meet the demanding requirements of bearing applications. Firstly, special steel offers exceptional hardness, which is crucial for bearings to withstand heavy loads and high-speed rotations. The hardness of the steel allows the bearing to resist wear and deformation, ensuring a longer lifespan and reliable performance. Secondly, special steel possesses excellent corrosion resistance. Bearings often operate in harsh environments where they are exposed to moisture, chemicals, and other corrosive substances. The special steel used in bearing manufacturing effectively prevents rust and deterioration, ensuring the bearings can withstand these challenging conditions. Furthermore, special steel has superior heat resistance and thermal stability. Bearings can generate significant heat during operation due to friction and pressure. The special steel used in their production can withstand high temperatures without losing its structural integrity, preventing premature failure and ensuring consistent performance. Additionally, special steel offers exceptional strength and toughness. These properties are vital for bearings to withstand the intense forces and impacts they experience during operation. The high strength and toughness of the steel prevent fractures, breakages, and other forms of damage, contributing to the overall durability and reliability of the bearings. Lastly, special steel has excellent dimensional stability and machinability. This allows for precise manufacturing and shaping of the bearing components, ensuring accurate dimensions and smooth surfaces. The dimensional stability of the steel ensures that the bearings can maintain their proper fit and alignment within the machinery, minimizing any potential issues or malfunctions. In conclusion, special steel is essential in the manufacturing of bearings due to its hardness, corrosion resistance, heat resistance, strength, toughness, dimensional stability, and machinability. These properties enable bearings to withstand heavy loads, high speeds, harsh environments, and intense forces, ensuring reliable and efficient operation in a wide range of applications.
Q:What is the role of special steel in the automotive industry?
Special steel plays a crucial role in the automotive industry by providing high strength, durability, and resistance to wear and corrosion. It is used in various components such as engine parts, chassis, suspension systems, and safety features. Special steel helps enhance the overall performance, safety, and fuel efficiency of vehicles, making it an essential material for the automotive industry.
FORWARD is specialized in special steel, die steel, including: plastic die steel, hot work steel, cold work steel, alloy structural steel, bearing steel, high speed tool steel, carbon steel, stainless steel and so on with different specification. We sincerely provide high quality and favourite price. Our company keeps the principle of “reputation is fisrt, customer is our god”. Honest, pragmatic spirit are directing our production and sale, in order to serve our valued customer with convenient, top speed and best from here.

1. Manufacturer Overview

Location Guangdong, China
Year Established 2005
Annual Output Value Above US$ 100 Million
Main Markets korea, India, Malaysia, Brazil, Germany, Belgium, Middle East
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port Guangzhou
Export Percentage 50%-80%
No.of Employees in Trade Department 21-100 People
Language Spoken: English; Chinese
b)Factory Information  
Factory Size: 23,000 square meters
No. of Production Lines 1
Contract Manufacturing OEM servise offered
Product Price Range high; average

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords