• Miniature Ball Bearings Steel System 1
  • Miniature Ball Bearings Steel System 2
  • Miniature Ball Bearings Steel System 3
Miniature Ball Bearings Steel

Miniature Ball Bearings Steel

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
50MT m.t.
Supply Capability:
500000TONS/YEAR m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specifications of Miniature Ball Bearings Steel

 

1. Dimensional sizes: Thickness: 14~100mm.Length:3000~5800mm,Diameter :14-500mm

2.Chemical composition: C=0.96~1.05,Si=0.15~0.35,Mn=0.25~0.45,Cr=1.4~1.65,

                                         P0.025,S0.025,Ni0.22,Cu0.20,Mo0.08

3. Grade: SAE51200/ GCr15 / 100cr6

4. Heat Treatment:

Soft annealing: heat to 680-720°C, cool slowly.

Hardness after annealing: Max. 241 HB

Hardening: 820 - 850 °C

Normalizing temperature: 840-880°C

Tempering: 540-680°C

bearing

5. Surface requirements: Black, grinding, bright, polish

6. Payment terms: 20% deposit, balance against L/C at sight or T/T.

 

Usage & Applications of Miniature Ball Bearings Steel

Miniature ball bearings are machinery components, which comprise an outer ring, inner ring, balls, retainers, shields and snap rings. High quality through hardened bearing steel improves reliability. High grade balls have improved roundness and finish to reduce vibration and noise. Super finished raceways to reduce friction, vibration and noise resulting in increased bearing life and reduced maintenance cost. Proven seal solutions effectively retain lubricant and exclude contamination from moisture, dust, and dirt which extends bearing life and reduces maintenance cost. Premium grease reduces noise, vibration and meets high temperature application requirements which extend bearing life. Bearings available 100% noise tested on state-of the art equipment to meet Electric Motor OEM low noise expectations. Product tolerances exceed bearing industry standards to allow for global interchangeability.

 

 

Packaging & Delivery of Miniature Ball Bearings Steel

10 pieces in one plastic tube, 10 tubes in one paper box or as customer required

Delivery time: 20 days after order confirmed.

Samples Policy: please arrange the sample cost and freight or freight collected. We will reduce this part expense from the total value of our first order.

 

 

Note:

1. According to national standard (GB) for our products, if not, supply according to national standards (GB) or agreement.

2. We can not only provide electric furnace +LF+VD and electro-slag re-melting (ESR)steel forging materials, but also forging products of piece, bar, etc.

3. Our company is equipped with roll equipment and can provide our customers with roll billets or finished.

4. Please send us your detailed specifications when inquire. We will reply to you ASAP.

 

 

 

 

Q:What are the main factors that affect the machinability of special steel?
Several factors can influence the machinability of special steel. The composition of the steel itself is one of the main factors. Special steels often contain complex alloys that enhance their properties, such as strength or corrosion resistance. However, these alloying elements can also have a negative impact on machinability. Chromium, nickel, and molybdenum, for example, can make the steel harder to machine due to their hardening or abrasive properties. The microstructure of the steel is another factor that affects machinability. Special steels can undergo heat treatments to achieve desired properties, but these treatments can also alter the microstructure of the material. The presence of carbides or precipitates can make the steel harder and more brittle, leading to increased tool wear and poorer machinability. The hardness of the steel is also important. Harder steels generally have lower machinability as they are more resistant to cutting forces. High-speed steels are often used to counteract this issue. However, excessively hard steels may require specialized tooling or machining techniques to achieve satisfactory results. Impurities or non-metallic inclusions in the steel can disrupt the cutting process and reduce tool life and surface finish. Special steel manufacturers strive to minimize impurities and control inclusion content to improve machinability. Lastly, cutting parameters and machining conditions play a significant role in determining machinability. Factors such as cutting speed, feed rate, and depth of cut must be optimized to achieve the best balance between material removal rate and tool life. Coolant usage and chip evacuation are also crucial considerations to prevent excessive heat buildup and chip recutting, which can negatively impact machinability. In conclusion, the machinability of special steel is affected by factors such as composition, microstructure, hardness, impurities, and cutting parameters. Understanding these factors and employing appropriate machining techniques can help maximize productivity and produce high-quality components from special steels.
Q:What are the different heat treatment methods used for special steel?
There are several heat treatment methods used for special steel, each with its own purpose and benefits. These methods are employed to enhance the mechanical properties of the steel, such as hardness, toughness, and strength. Some of the commonly used heat treatment methods for special steel include: 1. Annealing: This method involves heating the steel to a specific temperature and holding it at that temperature for a certain period of time, followed by slow cooling. Annealing helps in reducing the internal stress and improving the machinability of the steel. 2. Normalizing: In this process, the steel is heated to a temperature above its critical range and then allowed to cool in still air. Normalizing refines the grain structure of the steel, making it more uniform and improving its strength and toughness. 3. Quenching: Quenching is a rapid cooling process that involves immersing the steel in a quenching medium, such as oil or water, after it has been heated to a specific temperature. This method results in a hardened steel with increased hardness and wear resistance. 4. Tempering: Tempering is a heat treatment process that involves reheating the hardened steel to a specific temperature and then cooling it in still air. This process helps to reduce the brittleness of the steel and improve its toughness and ductility. 5. Austempering: Austempering is a specialized heat treatment method that involves quenching the steel to a temperature just above its martensite transformation range and then holding it at that temperature for a specific time, followed by air cooling. This process produces a steel with a combination of high strength and toughness. 6. Martempering: Martempering is a variation of quenching and tempering, where the steel is quenched and then held at a temperature slightly above its martensite transformation range before air cooling. This method is used to produce a steel with improved toughness and reduced distortion. 7. Nitriding: Nitriding is a surface hardening technique that involves introducing nitrogen into the steel by heating it in an atmosphere of ammonia gas. This process forms a hard nitride layer on the surface of the steel, increasing its hardness, wear resistance, and corrosion resistance. These heat treatment methods are crucial in tailoring the properties of special steel to meet specific requirements in various industries, such as automotive, aerospace, and tool manufacturing. The choice of heat treatment method depends on the desired properties and the intended application of the steel.
Q:Can special steel be used in the sporting goods manufacturing industry?
Yes, special steel can be used in the sporting goods manufacturing industry. Special steel, with its unique properties such as high strength, durability, and corrosion resistance, can be utilized for producing various sporting goods like golf clubs, tennis rackets, bike frames, and baseball bats. These steels can enhance performance, improve longevity, and provide better control and accuracy in sports equipment.
Q:Can special steel be coated?
Yes, special steel can be coated. Coating special steel provides several benefits such as corrosion resistance, improved aesthetics, increased durability, and enhanced functionality. There are various coating materials and techniques available for special steel, including but not limited to electroplating, hot-dip galvanizing, powder coating, and ceramic coating. These coatings help protect the steel from environmental factors, chemical exposure, and wear and tear, thereby extending its lifespan and maintaining its performance. Additionally, coatings can also be customized to provide specific properties like non-stick surfaces, heat resistance, or anti-microbial properties, depending on the intended application of the special steel.
Q:How does special steel perform under high-temperature conditions?
Special steel is specifically designed to perform well under high-temperature conditions. It exhibits excellent resistance to thermal expansion, oxidation, and creep, allowing it to maintain its structural integrity and mechanical properties when exposed to elevated temperatures. The unique composition of special steel, which often includes elements such as chromium, nickel, and molybdenum, contributes to its high-temperature performance. These alloying elements form a protective oxide layer on the surface of the steel, known as passivation, which acts as a barrier against corrosion and further enhances its resistance to high temperatures. Additionally, the microstructure of special steel is carefully controlled through various heat treatment processes, such as quenching and tempering, to achieve optimal toughness and strength even at elevated temperatures. Overall, special steel demonstrates exceptional performance and reliability in high-temperature environments, making it a preferred choice for applications such as power generation, aerospace, and petrochemical industries.
Q:How is special steel used in the medical industry?
Special steel is used in the medical industry for various applications, including the manufacturing of surgical instruments, implants, and medical devices. It possesses unique properties such as high strength, corrosion resistance, and biocompatibility, making it ideal for these applications. Additionally, special steel is used in the production of high-quality tools and equipment used in medical research and laboratory settings.
Q:What are the different quenching techniques used for special steel?
There are several different quenching techniques used for special steel, including oil quenching, water quenching, and air quenching. Oil quenching involves immersing the steel in oil to rapidly cool it and achieve the desired hardness. Water quenching is a more aggressive technique, where the steel is submerged in water to achieve even faster cooling and increased hardness. Air quenching, on the other hand, involves allowing the steel to cool in ambient air, resulting in a slower cooling rate and less hardness. Each technique has its own advantages and is chosen based on the specific requirements of the steel being quenched.
Q:What are the different methods of surface ion nitriding for special steel?
There are several methods of surface ion nitriding for special steel, including traditional gas nitriding, plasma nitriding, and ion nitriding. Each method involves introducing nitrogen ions into the surface of the steel to improve its hardness, wear resistance, and corrosion resistance. Gas nitriding involves exposing the steel to ammonia gas at high temperatures, while plasma nitriding uses a low-pressure plasma to generate nitrogen ions. Ion nitriding, on the other hand, utilizes a high-voltage electrical discharge to create the nitrogen ions. Overall, these methods offer various options for enhancing the surface properties of special steel, depending on the specific requirements and desired outcomes.
Q:What are the main characteristics of electrical steel forgings?
The main characteristics of electrical steel forgings include high magnetic permeability, low core loss, and high electrical resistivity. These properties make electrical steel forgings ideal for applications in electrical transformers, motors, and generators, where efficient magnetic performance and minimal energy loss are crucial. Additionally, electrical steel forgings are known for their excellent mechanical strength, thermal stability, and resistance to corrosion, making them durable and reliable in demanding environments.
Q:What are the different nitriding techniques used for special steel?
There are several nitriding techniques used for special steel, including gas nitriding, salt bath nitriding, plasma nitriding, and ion nitriding. Each technique involves introducing nitrogen into the surface of the steel to improve its hardness, wear resistance, and corrosion resistance. Gas nitriding involves exposing the steel to ammonia gas at high temperatures, while salt bath nitriding immerses the steel in a bath of molten salts containing nitrogen. Plasma nitriding and ion nitriding both use electrical discharges to ionize nitrogen gas and accelerate it towards the steel surface. These techniques offer different levels of control over the nitriding process and can be tailored to meet specific requirements for different types of special steel applications.
REDMETAL,a well-known enterprise specializing in the production and sales of spring steel and bearing steel. Since the establishment of our company, we have been aimed to provide the customers with qualify and cheap product and the satisfatory service.

1. Manufacturer Overview

Location Jiangsu, China
Year Established 1990
Annual Output Value Above US$ 20 Million
Main Markets Mid East; Eastern Europe; North America
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port Shanghai
Export Percentage 20% - 30%
No.of Employees in Trade Department 21-50 People
Language Spoken: English; Chinese
b)Factory Information  
Factory Size: Above 100,000 square meters
No. of Production Lines 1
Contract Manufacturing OEM Service Offered;
Product Price Range High; Average

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords