• Hot Rolled Carbon 25mm Thick Mild Steel Plate S45c System 1
  • Hot Rolled Carbon 25mm Thick Mild Steel Plate S45c System 2
  • Hot Rolled Carbon 25mm Thick Mild Steel Plate S45c System 3
Hot Rolled Carbon 25mm Thick Mild Steel Plate S45c

Hot Rolled Carbon 25mm Thick Mild Steel Plate S45c

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
30 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Carbon Steel
Shape:
Steel Sheet

Hot Rolled Carbon 25mm Thick Mild Steel Plate S45c

Product information:

1,Grade: 50#(SAE1050,)

         45#(SAE1045,1.1191,S45C)

2,Specification:25/30/35/40/45/50/55/60/65/70/75/80/90/105/115/125MM.cutted any size by customer request

Chemical composition: C=0.42-0.5,Si=0.17-0.37,Mn=0.5-0.8,P≤0.035,S≤0.035,Cr≤0.025,Ni≤0.025

3,Hardness:HBS=140-210

4,Application:Used for making the mould bottom, plastic mould and normal mechinery parts.

5,Payment terms:30%deposit,and balance against T/T or L/C at sight.

1.Specifications of ASTM Steel Plate 
    Round bar     Diameter(mm)    Length (mm)
    20~800    3000~5800
     Plate    Thickness(mm)    Width (mm)   Length (mm)
    Max:800    1600~2300   3000~5800
2.Chemical compositon(%) 
 Standard Number  C  SiMn  Cr  NiCu    S  P
  GB 45# 0.42~0.50 0.17~0.370.5~0.8 ≤0.25≤0.3≤0.25≤0.035≤0.035
  AISI 1045 0.43~0.50 0.10~0.600.6~0.9


≤ 0.50≤0.40
  DIN 1.1191 0.42~0.48 0.15~0.350.6~0.9 ≤0.15≤0.2≤0.3

  JIS S45C 0.42~0.50  ≤0.400.5~0.8 ≤0.40≤ 0.4


3.Delivery condition and  Heat treatment        
ForgingNormalization Hardening Subcritical  annealingIsothermal annealingTempering
1100~850*840~880820~860 water650~700*820~860 600x1h*550~660
4.Characteristic  
Nice machanical porpertys and worse  hardenability,so, it is used for machine parts
5.Application of ASTM Steel Plate 
1): Can be used in many fields such as building, automobile, shipbuilding, 
petrochemical, machinery, medicine, food, electric power, energy, space, building 
and decoration, etc.  
2): Can be made into mould template, mortise pin, column.
3): This kind of steel have good mechanical property, is widely used in structural parts 
which may support stress alternation, especially made into some connecting 
rods, bolts, wheel gear...
4): This kind of steel is the most common blanks and materials of shaft part.

Product show

Hot Rolled Carbon 25mm Thick Mild Steel Plate S45c

Workshop show

Hot Rolled Carbon 25mm Thick Mild Steel Plate S45c

Our service:

-High manufacturing accuracy
-High strength
-Small inertia resistance
-Strong heat dissipation ability
-Good visual effect
-Reasonable price

Chose happens because of quality, then price, We can give you both.Additionally, we can also offer professional products inquiry, products knowledge train(for agents), smooth goods delivery, exellent customer solution proposals.Our service formula: good quality+good price+good service=customer's trust
SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem.

If you need the sample, please feel free to let me know. Any question, we will contact you ASAP!

 

Q:What are the safety measures taken during the production of special steel?
To ensure the safety and wellbeing of workers and reduce potential hazards, various safety measures are taken during the production of special steel. These measures encompass the following: 1. Personal Protective Equipment (PPE): All workers involved in special steel production must wear appropriate PPE, including safety helmets, goggles, gloves, and protective clothing. This safeguards them from injuries, burns, and exposure to hazardous substances. 2. Training and Education: Workers undergo comprehensive training and education on safe work practices and procedures. They gain knowledge about the potential hazards associated with special steel production and receive training on the proper handling of equipment and materials. 3. Risk Assessments: Regular risk assessments are conducted to identify potential hazards and evaluate the level of risk associated with each task. This facilitates the implementation of control measures to mitigate risks and prevent accidents. 4. Machinery and Equipment Safety: All machinery and equipment used in the production process are meticulously maintained and regularly inspected to ensure optimal working conditions. Safety features, such as emergency stop buttons and guards, are installed to prevent accidents and injuries. 5. Ventilation and Exhaust Systems: Given the high temperatures and use of chemicals in special steel production, ventilation and exhaust systems are installed to eliminate harmful fumes and gases from the work environment. This ensures a safe and healthy atmosphere for workers. 6. Fire Prevention: To minimize the risk of fire accidents, fire prevention measures are implemented, including the installation of fire alarms, extinguishers, and sprinkler systems. Workers are also trained on fire safety protocols and evacuation procedures. 7. Emergency Response Plans: Comprehensive emergency response plans are developed and communicated to all workers. These plans outline the steps to be taken in the event of accidents, fires, or other emergencies, ensuring a swift and organized response. 8. Regular Safety Inspections: Safety professionals conduct regular inspections to identify any potential safety hazards or non-compliance with safety protocols. Any issues or deficiencies are promptly addressed to maintain a safe working environment. By implementing these safety measures, special steel production can be carried out in a controlled and safe manner, safeguarding workers and minimizing the risk of accidents or injuries.
Q:How does special steel perform in high-speed machining operations?
Special steel is designed with high-speed machining operations in mind, as it possesses unique properties that make it perfect for cutting, drilling, and shaping at high speeds. To begin with, special steel boasts excellent thermal conductivity, enabling it to effectively dissipate heat generated during machining. This is crucial in high-speed operations, as excessive heat can result in tool wear and deformation. By efficiently transferring heat away from the cutting edge, special steel helps prolong tool lifespan and maintain dimensional accuracy. Additionally, special steel exhibits high hardness and strength, enabling it to withstand the intense forces and pressures encountered during high-speed machining. This allows it to retain its shape and integrity, reducing the likelihood of tool breakage or deformation. Furthermore, its strength ensures that the machined parts possess exceptional durability and resistance to wear. Moreover, special steel demonstrates good machinability, making it easy to cut and shape with minimal effort. Its composition and microstructure are optimized for efficient chip formation and removal, ensuring smooth operations and minimizing the risk of chip clogging or tool jamming. Furthermore, special steel often contains alloying elements like chromium, molybdenum, and vanadium, which enhance its resistance to corrosion and wear. This is particularly important in high-speed machining, where the cutting tools and workpiece are in constant contact. The improved corrosion and wear resistance of special steel contribute to longer tool lifespan and improved surface finish. In summary, special steel is engineered specifically to excel in high-speed machining operations. Its thermal conductivity, hardness, strength, machinability, and resistance to corrosion and wear make it the preferred choice for applications that demand fast and precise metal removal.
Q:What are the different corrosion-resistant grades of special steel?
There are several corrosion-resistant grades of special steel that are commonly used in various industries. These grades are specifically designed to resist corrosion and maintain their structural integrity in harsh environments. Some of the different corrosion-resistant grades of special steel are: 1. Stainless Steel: Stainless steel is one of the most popular corrosion-resistant grades and is widely used in various applications. It contains a minimum of 10.5% chromium, which forms a protective passive oxide layer on the surface, preventing corrosion. There are different types of stainless steel, such as austenitic, ferritic, and martensitic, each with varying levels of corrosion resistance. 2. Duplex Stainless Steel: Duplex stainless steel is a combination of austenitic and ferritic stainless steels, offering superior corrosion resistance compared to conventional stainless steel grades. It has a high chromium content, along with other alloying elements like molybdenum and nitrogen, which enhance its resistance to pitting, crevice corrosion, and stress corrosion cracking. 3. Super Duplex Stainless Steel: Super duplex stainless steel is an even higher corrosion-resistant grade than duplex stainless steel. It has a higher chromium and molybdenum content, providing excellent resistance to highly corrosive environments, such as seawater, chemicals, and acids. Super duplex stainless steel is commonly used in offshore oil and gas industries. 4. Nickel Alloys: Nickel alloys, such as Inconel and Hastelloy, are highly corrosion-resistant grades of special steel. These alloys have a high nickel content, along with other elements like chromium and molybdenum, which make them resistant to a wide range of corrosive environments, including high-temperature and acidic conditions. 5. Titanium Alloys: Titanium alloys are known for their exceptional corrosion resistance, especially in aggressive media, such as seawater and chemical processing environments. These alloys have a low density, high strength, and superior resistance to pitting, crevice corrosion, and stress corrosion cracking. 6. Aluminum Alloys: Certain aluminum alloys, such as 5052 and 6061, are also corrosion-resistant grades of special steel. These alloys have a protective oxide layer that forms on the surface, providing excellent resistance to atmospheric corrosion. Aluminum alloys are commonly used in marine and aerospace applications. These are just a few examples of the different corrosion-resistant grades of special steel. The selection of the appropriate grade depends on the specific corrosive environment, temperature, mechanical properties required, and other factors related to the intended application.
Q:How does special steel contribute to the renewable energy storage?
Special steel plays a crucial role in renewable energy storage by enabling the production of high-performance components for energy storage systems. It is used in the manufacturing of batteries, such as lithium-ion batteries, which are widely utilized in renewable energy storage applications. Special steel provides the necessary strength, durability, and resistance to corrosion, ensuring the longevity and efficiency of these batteries. Additionally, special steel is essential for the construction of renewable energy infrastructure, including wind turbines and solar panel frames, which require sturdy and reliable materials to withstand harsh environmental conditions. Therefore, special steel contributes significantly to the development and advancement of renewable energy storage solutions.
Q:How does special steel contribute to the power generation machinery industry?
Special steel plays a crucial role in the power generation machinery industry by contributing to the efficiency, reliability, and durability of power generation equipment. Firstly, special steel possesses exceptional mechanical properties, such as high strength, toughness, and temperature resistance. These properties make it ideal for manufacturing key components of power generation machinery, such as turbines, generators, and boilers. The superior strength and toughness of special steel enable these components to withstand high pressures, extreme temperatures, and harsh operating conditions, ensuring the safe and efficient operation of power plants. Moreover, special steel alloys can be specifically designed to resist corrosion, erosion, and wear, which are common challenges faced by power generation equipment. Corrosion can be caused by the chemical reactions between metals and the environment, while erosion and wear result from the high-speed flow of steam, water, or gases. By utilizing corrosion-resistant and wear-resistant special steel, power generation machinery can operate for longer periods without significant degradation, reducing maintenance requirements and downtime. Another significant contribution of special steel to the power generation machinery industry is its ability to retain magnetic properties at elevated temperatures. This property is crucial for electrical generators, as it ensures optimal performance and efficiency. Special steel with excellent magnetic properties enables generators to produce electricity with minimal energy losses due to heat, resulting in higher power output and reduced energy consumption. Furthermore, the design flexibility of special steel allows for the production of customized components, tailored to the specific requirements of different power generation technologies. For instance, in nuclear power plants, special steel alloys with high resistance to radiation and neutron embrittlement are used for the construction of reactor pressure vessels and other critical components. In renewable energy systems like wind turbines, special steel with superior fatigue resistance is utilized to withstand the cyclic loading experienced by turbine blades. In summary, special steel significantly contributes to the power generation machinery industry by enhancing the efficiency, reliability, and durability of power generation equipment. Its exceptional mechanical properties, corrosion resistance, wear resistance, magnetic properties, and design flexibility make it indispensable for manufacturing components that can withstand extreme conditions and ensure the continuous and efficient generation of electricity.
Q:Can special steel be used in mining applications?
Yes, special steel can be used in mining applications. Special steel alloys are often utilized in mining equipment and machinery due to their high strength, durability, and resistance to wear and corrosion. These properties make them suitable for withstanding the harsh and demanding conditions found in mining operations.
Q:How is wear-resistant tool steel used in the production of cutting tools?
Wear-resistant tool steel is commonly used in the production of cutting tools due to its high hardness and resistance to wear. This steel is able to withstand the abrasive forces and high temperatures generated during cutting operations, resulting in longer tool life and improved cutting performance. The wear-resistant tool steel is typically used to manufacture various cutting tools such as drills, milling cutters, saw blades, and lathe tools, ensuring durability and efficiency in metalworking and machining processes.
Q:How does special steel perform in erosion applications?
Special steel is known for its exceptional performance in erosion applications. Its unique properties such as high hardness, corrosion resistance, and wear resistance make it highly suitable for environments where erosion is a common issue. Erosion is the gradual wearing away of a material due to the action of external forces such as abrasion, impact, or cavitation. In applications where erosion is prevalent, such as mining, oil and gas, and chemical processing industries, regular steel may not be able to withstand the harsh conditions and may quickly deteriorate. Special steel, on the other hand, is specifically designed to withstand erosive forces and maintain its structural integrity over an extended period. Its high hardness helps it resist abrasion and prevents the material from wearing down quickly. This makes it ideal for applications involving the movement of abrasive materials or fluids. Furthermore, special steel also exhibits excellent corrosion resistance, which is crucial in erosive environments. It can resist the corrosive effects of chemicals, moisture, and other harsh substances, ensuring the material's longevity and performance. In addition to hardness and corrosion resistance, special steel also offers exceptional wear resistance. It can withstand repeated impacts, high pressures, and sliding contact without significant damage, making it highly effective in erosion-prone applications. This wear resistance helps to minimize downtime and maintenance costs associated with material replacement or repair. Overall, special steel's properties make it a reliable and durable choice for erosion applications. Its ability to resist abrasion, corrosion, and wear ensures that it can withstand the demanding conditions often found in such environments, providing long-lasting performance and reducing the need for frequent replacements.
Q:How does special steel contribute to sustainability efforts?
Special steel contributes to sustainability efforts in several ways. Firstly, special steel is known for its durability and longevity. It has a high resistance to corrosion, wear, and tear, which means it can withstand harsh environments and heavy usage. This durability extends the lifespan of products made with special steel, reducing the need for frequent replacements. By minimizing the consumption of resources and reducing waste generation, special steel helps conserve natural resources and minimize environmental impact. Additionally, special steel is highly recyclable. It can be melted down and reprocessed multiple times without losing its properties or quality. This makes it a valuable material in the circular economy, where resources are reused and recycled to reduce dependence on virgin materials. The recycling process for special steel requires less energy compared to producing steel from raw materials, resulting in lower greenhouse gas emissions and energy consumption. Furthermore, special steel is often used in energy-efficient applications. For example, it is used in the production of wind turbines, which generate renewable energy. By providing a material that can withstand the demanding conditions of wind turbines, special steel contributes to the expansion of clean energy sources. This helps reduce reliance on fossil fuels, decrease carbon emissions, and mitigate climate change. Lastly, special steel plays a crucial role in the transportation sector. It is used in the manufacturing of lightweight, fuel-efficient vehicles, such as electric cars. By reducing the weight of vehicles, special steel helps improve fuel efficiency and decrease greenhouse gas emissions. Additionally, special steel is used in the construction of infrastructure for electric vehicle charging stations, supporting the transition to cleaner transportation systems. In conclusion, special steel contributes to sustainability efforts by promoting durability, recyclability, energy efficiency, and clean energy generation. Its properties and applications help conserve resources, reduce waste, and mitigate climate change, making it an important material in creating a more sustainable future.
Q:What are the main applications of special steel in the power generation equipment?
Special steel is widely used in power generation equipment due to its exceptional properties such as high strength, corrosion resistance, and heat resistance. It finds applications in various components of power generation equipment, including turbine blades, boiler tubes, heat exchangers, and pressure vessels. These components need to withstand extreme conditions such as high temperatures, pressures, and corrosive environments. Special steel ensures the durability and reliability of power generation equipment, ultimately enhancing the efficiency and performance of power plants.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords