• Continue Casting Steel Billets Manufactured By Blasting Furnace System 1
  • Continue Casting Steel Billets Manufactured By Blasting Furnace System 2
Continue Casting Steel Billets Manufactured By Blasting Furnace

Continue Casting Steel Billets Manufactured By Blasting Furnace

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Continue Casting Steel Billets Manufactured By Blasting Furnace

 

1.Structure of  Continue Casting Steel Billets Manufactured By Blasting Furnace

 

Continue Casting Steel Billets Manufactured By Blasting Furnace is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity, etc Several, mainly related to shape of rolled products. Simple rolled section steel, choose cross section of square billet or rectangular billet. rolling The sector products such as flat steel, Angle steel, select the rectangular billet or slab. Had better profiled billet when production beams, channels, and in rolling process Lines and improve the yield. The raw material of round billet is the production of seamless tube. 


2.Main Features of  Continue Casting Steel Billets Manufactured By Blasting Furnace.

Continue Casting Steel Billet Manufactured By Blasting Furnace section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Billet section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel billet by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.

 

3.  Continue Casting Steel Billets Manufactured By Blasting Furnace Images

 

Continue Casting Steel Billets Manufactured By Blasting Furnace

Continue Casting Steel Billets Manufactured By Blasting Furnace

 

 

 

 

 

4.  Continue Casting Steel Billets Manufactured By Blasting Furnace Specification

 Continue Casting Steel Billet Manufactured By Blasting Furnace  rolled steel, after processing can be used for mechanical parts, forging parts, processing all kinds of steel, steel Q345B channel steel, wire rod is the role of the billet. Steel billet is used in the production of semi-finished products, generally cannot be used directly for the society. Steel billets and steel are strictly divided into standard, cannot decide to whether the business enterprise of the final product, and according to unified standards to perform the whole society. Typically, billet and the steel is relatively easy to distinguish, but for some steel billet, and have the same specification and same steel purposes (such as rolling tube billet), whether can be used for other industries, whether through steel processing process, whether through a finished product rolling mill processing to distinguish

Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: billet: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm Surface tilt: no more than billet section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P

         There are three shapes of the steel billets: square billet, slab, rectangular billet The Chinese billet, rectangular billet is mainly suitable for rolling hot rolled strip, building reinforced bar, Ordinary wire, high speed wire rod and various small profile. Of the slab are mainly used for rolling plate and hot coil sheet.

 

5.FAQ of  Continue Casting Steel Billets Manufactured By Blasting Furnace

 

We have organized several common questions for our clientsmay help you sincerely 

 

①How could we get the quotation by internet?

You can send you inquiry through our website: www.okorder.com or you can email to me dirrectly.

 

②What about the quality certificate report?

We will send you the original quality certificate from the steel mill.

 

③How about your facotry's annual capacity?

Our capacity is about 1000,000tons, and if you need more we can supply to you too.

 

 

Q:How are steel billets used in the manufacturing of pipes and tubes?
Steel billets are used in the manufacturing of pipes and tubes as they serve as the starting material for the production process. These billets are heated and then passed through a series of rolling mills to shape them into cylindrical forms. The rolling process helps to reduce the thickness and diameter of the billets, ultimately transforming them into seamless or welded pipes and tubes. Additionally, steel billets may also undergo further treatments such as heat treatment or surface finishing to enhance their strength, durability, and overall quality before being used in various industries.
Q:How are steel billets used in the manufacturing of construction formwork?
Steel billets are an essential component used in the manufacturing of construction formwork. Formwork refers to the temporary or permanent molds or structures used to hold and support freshly poured concrete until it sets and hardens. Steel billets, which are semi-finished steel products, are used as the raw material for creating the formwork. These billets are typically made by casting molten steel into a rectangular or square shape and then allowing it to cool and solidify. The resulting billets are then further processed to create the specific formwork components. The steel billets are first cut into smaller sections according to the desired dimensions of the formwork. These sections are then shaped and welded together to form the framework of the formwork. The billets provide the necessary strength and durability to withstand the weight of the concrete and any external forces exerted during construction. Once the framework is completed, additional components such as panels, braces, and tie rods are attached to it, also made from steel billets. These components provide stability and help distribute the load evenly across the formwork. Steel billets are the preferred material for constructing formwork due to their high strength-to-weight ratio and excellent resistance to corrosion. They can withstand the pressure exerted by the concrete during pouring and curing, ensuring the formwork remains intact and stable. Additionally, steel billets can be easily molded and shaped into various configurations, allowing for flexibility and customization in formwork design. In summary, steel billets play a crucial role in the manufacturing of construction formwork. They provide the necessary strength, durability, and stability required to support freshly poured concrete until it sets and hardens. By utilizing steel billets, formwork manufacturers can create robust and reliable structures that contribute to efficient and safe construction processes.
Q:What are the applications of steel billets?
Steel billets are primarily used as raw material in the production of various steel products such as bars, rods, wire, and seamless tubes. They are also used in the manufacturing of components for automotive, construction, and machinery industries. Additionally, steel billets can be further processed to produce forgings, which are used in heavy machinery and equipment.
Q:What is the role of steel billets in the manufacturing of hydraulic systems?
The manufacturing of hydraulic systems heavily relies on steel billets, which have a crucial role to play. These billets serve as the raw material used for creating various components and structures within these systems. In order for hydraulic systems to function properly, it is imperative for their components to possess qualities such as strength, durability, and resistance to corrosion and pressure. Steel billets, due to their exceptional strength and toughness, are the perfect starting material for manufacturing hydraulic system components. Typically made from carbon steel, these billets offer excellent mechanical properties, including high tensile strength and hardness. These properties ensure that the components can endure the high pressures and forces encountered within hydraulic systems without deforming or failing. Furthermore, steel billets undergo several manufacturing processes such as forging, machining, and heat treatment in order to shape them into the desired components. These processes enable the creation of intricate designs and precise dimensions, guaranteeing a proper fit and functionality within the hydraulic system. Additionally, steel billets are renowned for their excellent resistance to corrosion, an essential quality in hydraulic systems due to the presence of fluids and potential exposure to moisture. Corrosion can lead to component failure, leaks, and a decrease in system performance. By utilizing steel billets, these issues can be prevented, ensuring the longevity and reliability of the hydraulic system. To sum up, steel billets are indispensable in the manufacturing of hydraulic systems as they provide the necessary strength, durability, and resistance to corrosion required for the components within these systems. Their versatility and ability to be shaped and processed make them an ideal material choice for creating reliable and efficient hydraulic systems.
Q:What are the properties of high-quality steel billets?
High-quality steel billets possess several key properties that make them desirable for various applications. These properties include a high level of purity, uniformity in composition and size, excellent mechanical strength, and good surface finish. Additionally, they should have low levels of impurities such as sulfur and phosphorus, as well as proper heat treatment to ensure optimal hardness and toughness. Ultimately, these properties allow high-quality steel billets to be easily machined, forged, or rolled into different shapes, making them suitable for use in industries such as construction, automotive, and manufacturing.
Q:How do steel billets contribute to the overall seismic resistance of a structure?
Steel billets contribute to the overall seismic resistance of a structure by providing strength, ductility, and energy dissipation capabilities. Due to their high strength-to-weight ratio, steel billets help in resisting the lateral forces generated during an earthquake. Their ductility allows them to undergo significant deformation without failure, absorbing and dissipating the seismic energy. Additionally, their uniformity and consistency in material properties make them reliable components for structural systems, enhancing the overall stability and resilience of the structure against seismic events.
Q:How are steel billets used in the production of structural steel sections?
Steel billets are used as a primary raw material in the production of structural steel sections. These billets are heated and then passed through a series of roller mills to shape them into various structural profiles such as beams, channels, angles, and columns. The hot rolling process helps to improve the strength and durability of the steel, making it suitable for construction purposes.
Q:What are the main factors affecting the creep resistance of steel billets?
The main factors affecting the creep resistance of steel billets are temperature, stress level, and alloy composition. Temperature plays a crucial role in determining the creep resistance of steel billets. As the temperature increases, the atomic diffusion within the material becomes more active, leading to enhanced creep deformation. Higher temperatures allow for more rapid grain growth and can result in the formation of voids and cracks, ultimately weakening the billet's resistance to creep. The stress level applied to the steel billet also significantly affects its creep resistance. Higher stresses increase the rate of creep, as they promote dislocation movement within the crystal lattice. Additionally, stress concentration at various defects, such as voids or impurities, can accelerate creep deformation. Therefore, controlling the stress level is essential in maintaining the creep resistance of steel billets. The alloy composition of the steel billet is another critical factor influencing its creep resistance. Different alloying elements can alter the microstructure of the material, affecting its creep properties. For example, elements like chromium, molybdenum, and vanadium can form stable carbides that hinder dislocation movement and improve creep resistance. Other elements, such as sulfur or phosphorus, can promote grain boundary sliding and reduce creep resistance. In summary, the creep resistance of steel billets is primarily influenced by temperature, stress level, and alloy composition. By carefully controlling these factors, manufacturers can produce steel billets with enhanced creep resistance, ensuring their suitability for various applications.
Q:What are the physical properties of steel billets?
Steel billets possess various physical properties that render them highly suitable for a multitude of industrial applications. Primarily, they exhibit a remarkable strength-to-weight ratio, ensuring impeccable structural integrity and the ability to endure heavy loads without deformation or breakage. Another significant physical attribute of steel billets lies in their hardness. Steel is renowned for its hardness, which grants it resistance against wear and tear. Consequently, steel billets prove to be ideal for sectors where durability and long-term performance are of utmost importance, such as construction, automotive, and machinery industries. Furthermore, steel billets boast a lofty melting point, enabling them to withstand extreme heat without deformation or liquefaction. This trait proves indispensable in applications involving high temperatures, such as the manufacturing of tools, machinery, and equipment within the aerospace and energy sectors. Additionally, steel billets exhibit exceptional ductility and malleability, facilitating their effortless manipulation into diverse structures and products. This adaptability makes steel billets highly versatile and amenable to various manufacturing processes, including rolling, forging, and extrusion. Moreover, steel billets demonstrate commendable electrical and thermal conductivity, rendering them suitable for applications that necessitate efficient heat transfer and electrical conduction. These properties hold particular value in the production of electrical wiring, power transmission lines, and heat transfer equipment. In conclusion, steel billets possess key physical properties encompassing high strength, hardness, melting point, ductility, malleability, and conductivity. These attributes enable their utilization across a wide range of industries and applications, where their exceptional performance and reliability are indispensable.
Q:What are the main types of steel billet rolling mills?
Various types of steel billet rolling mills exist, each possessing unique characteristics and functionalities to cater to the diverse requirements of different industries. 1. Two-high rolling mills: These mills comprise two horizontally mounted rolls rotating in opposite directions. Two-high mills are commonly utilized for shaping and reducing the thickness of steel billets. They boast a relatively simple design and are suitable for light to medium-duty applications. 2. Three-high rolling mills: Three-high mills consist of three rolls arranged vertically in a triangular configuration. The upper and lower rolls are driven, while the middle roll remains idle and adjustable. This design allows for greater flexibility in shaping and reducing the dimensions of the billet. Three-high mills are often employed to produce high-quality finished products with precise dimensions and surface finishes. 3. Four-high rolling mills: Four-high mills possess four rolls, including two small diameter work rolls and two larger diameter backup rolls. The work rolls are driven, while the backup rolls provide support and adjust the billet's thickness. Four-high mills are highly versatile and can be utilized for a wide range of applications, encompassing both hot and cold rolling processes. 4. Cluster mills: Cluster mills consist of multiple small-diameter rolls arranged in a cluster. These rolls collaborate to reduce the billet's thickness and shape it into the desired form. Cluster mills are commonly utilized to produce high-precision products such as wires and thin strips. 5. Steckel mills: Steckel mills are specialized rolling mills designed for the production of heavy-gauge plates and strips. They incorporate a combination of a reversible rolling mill and a continuous casting machine. Steckel mills are renowned for their high productivity and the capability to manufacture a wide array of steel products with excellent surface quality. Each type of steel billet rolling mill boasts specific advantages and is suitable for particular applications. The selection of a mill depends on factors including the desired final product, required dimensions, production volume, and budgetary limitations.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords