• Z38 BMP Rolled Steel Coil Construction Roofing Construction System 1
  • Z38 BMP Rolled Steel Coil Construction Roofing Construction System 2
  • Z38 BMP Rolled Steel Coil Construction Roofing Construction System 3
  • Z38 BMP Rolled Steel Coil Construction Roofing Construction System 4
  • Z38 BMP Rolled Steel Coil Construction Roofing Construction System 5
  • Z38 BMP Rolled Steel Coil Construction Roofing Construction System 6
Z38 BMP Rolled Steel Coil Construction Roofing Construction

Z38 BMP Rolled Steel Coil Construction Roofing Construction

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Z38 BMP Rolled Steel Coil Construction Roofing Construction Z38 BMP Rolled Steel Coil Construction Roofing Construction

Description of Z38 BMP Rolled Steel Coil Construction Roofing Construction

PPGI is made by cold rolled steel sheet and galvanized steel sheets as baseplate,  through the surface pretreatment (degreasing, cleaning, chemical conversion processing), coated by the method of continuous coatings (roller coating method), 

and after roasting and cooling. Zinc coating: Z60, Z80, Z100, Z120, Z180, Z275, G30, G60, G90
Alu-zinc coating: AZ60, AZ80, AZ100, AZ120, AZ180, G30, G60, G90 

 

Z38 BMP Rolled Steel Coil Construction Roofing Construction

Main Feature of Z38 BMP Rolled Steel Coil Construction Roofing Construction

1) Excellent corrosion resistance: The zinc layer provides a good protection of Pre-painted Galvanizeed Steel Sheet.
2) High heat resistance: The reflective surface of the material aids in efficiently reflecting the sunlight away and in turn reducing the amount of heat transmitted. The thermal reflectivity converts into energy savings.
3) Aesthetics: Pre-Painted Galvanized steel sheet is available in plethora of patterns and multiple sizes as per the requirements that given by our customers.
4) Versatility: can be used in the various areas.
Standard seaworthy export packing: 3 layers of packing, inside is kraft paper, water plastic film is in the middle and outside GI steel sheet to be covered by steel strips with lock, with inner coil sleeve.

 

Applications of Z38 BMP Rolled Steel Coil Construction Roofing Construction

1. Construction and building: roofing; ventilating duct; handrail; partition panel;etc.

2. Electric appliance: refrigerator; washing machine; refrigerator; DVD;etc.

3.Transportation: oil tank; road sign; etc.
4.Agriculture:barn; etc.

5.Others:vending machine; game machine; etc.   Z38 BMP Rolled Steel Coil Construction Roofing ConstructionSpecifications of Z38 BMP Rolled Steel Coil Construction Roofing Construction

Classified symbolYield Point Minimum N/mm2Tensile Strength MinimumElongation Minimum %Application
N/mm2Nominal Thickness mm (t)
JISYogic
0.25-0.40.4-0.60.6-1.01.0-1.6
G3312specification
CGCCCGCC-205-270-20-21-24-24Commercial
CGCDCGCD---270---273132Drawing
---CG34024534020202020Structural
CGC400CG40029540016171818Structural
CGC440CG44033544014151618Structural
CGC490CG49036549012131416Structural
CGC570CG570560570------------Structural









ASTM DesignationYield Point MinimumTensile Strength MinimumElongation Minimum %Application
Q/BQB 445-2004(China standard)ASM A653/A653MJISG 3312
ksi(MPa)ksi(MPa)
TDC51D+Z(CS TYPE A+Z)CGCC
A653(M)-99 CS TYPE A,B,C---------Commercial
TDC52D+Z
CGCD
A653(M)-99 FS---------Lock Forming
TS250GD+Z(G250+Z)-
A653(M)-99 DS---------Drawing
TS300GS+Z(G300+Z)CGC 400
A653(M)-99 SS Grade33(230)33(230)45(310)20Structural
TS350GD+Z(G350+Z)CGC490
A653(M)-99 SS Grade37(255)37(255)52(360)18Structural
TS550GD+Z(G550+Z)CGC570
A653(M)-99 SS Grade40(275)40(275)55(380)16Structural



A653(M)-99 SS Grade50(345)50(345)65(450)12Structural



A653(M)-99 SS Grade80(550)80(550)82(570)---Structural



FAQ of Z38 BMP Rolled Steel Coil Construction Roofing Construction

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  1, ISO, BV, CE, SGS approved.
  2, Competitive price and quality. 
  3, Efficient service team online for 24 hours. 
  4, Smooth production ability(50000tons/month) .
  5, quick delivery and standard exporting package. 
  6, Flexible payment with T/T, L/C, Paypal, Kunlun bank, etc .


 


Q:What is the lifespan of a steel billet?
The lifespan of a steel billet is indefinite as long as it is properly stored and maintained, making it a durable and long-lasting material.
Q:What is the purpose of using steel billets in the manufacturing industry?
The purpose of using steel billets in the manufacturing industry is primarily to serve as a raw material for further processing and shaping into various steel products. Steel billets are semi-finished metal products that are cast in a specific shape and size, typically in a square or rectangular cross-section. These billets provide a consistent and standardized starting point for the production of a wide range of steel products, such as bars, rods, wire, tubes, pipes, and structural components. By using steel billets, manufacturers can ensure uniformity in the material properties and dimensions of their end products, which is crucial for maintaining quality and meeting industry standards. Moreover, steel billets offer several advantages in terms of their strength, durability, and versatility. Steel is known for its exceptional strength-to-weight ratio, making it an ideal choice for applications that require high structural integrity and load-bearing capacity. The use of steel billets allows manufacturers to produce components that can withstand heavy loads, extreme temperatures, and harsh environmental conditions. Furthermore, steel billets can be easily shaped and processed through various techniques such as rolling, forging, extrusion, and machining. This flexibility enables manufacturers to create a wide range of steel products with different shapes, sizes, and properties, catering to diverse industrial needs. Overall, the purpose of using steel billets in the manufacturing industry is to provide a reliable and versatile raw material for producing high-quality steel products that serve various applications in construction, automotive, aerospace, machinery, infrastructure, and many other sectors.
Q:What are the different heat treatment processes used for steel billets?
There are several heat treatment processes used for steel billets, each serving a specific purpose and resulting in different mechanical properties. These processes include annealing, normalizing, quenching, tempering, and case hardening. Annealing is a process where steel billets are heated to a specific temperature and then slowly cooled in order to soften the material and improve its ductility. This process helps to reduce internal stresses and homogenize the microstructure of the steel. Normalizing involves heating the steel billets to a temperature above the critical point and then allowing them to cool in still air. This process is used to refine the grain structure and improve the mechanical properties, such as strength and toughness. Normalizing also helps to reduce any residual stresses and improve the machinability of the steel. Quenching is a rapid cooling process that involves immersing the heated steel billets into a quenching medium, such as water or oil, to achieve a high degree of hardness. This process results in a hardened and brittle material, which is often followed by a tempering process to reduce the brittleness and improve the toughness. Tempering is the process of reheating the quenched steel billets to a specific temperature and then allowing them to cool slowly. This process helps to relieve any residual stresses and improve the toughness and ductility of the material. Tempering also helps to reduce the hardness achieved during the quenching process, resulting in a material with a balance of strength and toughness. Case hardening is a heat treatment process used to selectively harden the surface layer of the steel billets, while maintaining a softer and more ductile core. This is achieved by introducing carbon or nitrogen into the surface layer of the material, either through carburizing or nitriding processes. Case hardening improves the wear resistance and surface hardness of the steel, making it suitable for applications where high surface hardness is required. Overall, these different heat treatment processes for steel billets provide a range of mechanical properties and allow for customization based on the specific requirements of the application. Each process has its own advantages and limitations, and the selection depends on factors such as the desired mechanical properties, the steel grade, and the intended application.
Q:How do steel billets contribute to the manufacturing of agricultural equipment?
Due to their versatility and durability, steel billets are essential for the manufacturing of agricultural equipment. These semi-finished steel products serve as the foundation for various agricultural machinery. To begin with, steel billets are crucial for creating the main structural components of agricultural equipment, including tractors, harvesters, plows, and tillers. These components, such as the chassis, frame, and axles, require a strong and sturdy material to withstand the heavy loads and harsh conditions encountered in agricultural operations. Steel billets provide the necessary strength and resilience to ensure the equipment's ability to endure the rigors of farming. Moreover, steel billets are used to manufacture smaller parts and mechanisms that are vital to the functioning of agricultural machinery. Gears, sprockets, shafts, and bearings, for instance, are commonly made from steel billets. These parts play a crucial role in transmitting power and facilitating the smooth operation of various agricultural equipment. Additionally, steel billets contribute to the longevity and reliability of agricultural equipment. The high strength and durability of steel ensure that the machinery can withstand the demanding agricultural environment, including exposure to moisture, dirt, and extreme temperatures. This durability reduces maintenance requirements and extends the equipment's lifespan, resulting in cost savings for farmers. Furthermore, steel billets offer the advantage of being easily shaped and molded into complex designs. This enables manufacturers to create customized agricultural equipment tailored to specific farming needs. The flexibility in design allows for the production of specialized machinery for various agricultural operations, such as planting, harvesting, irrigation, and livestock management. In conclusion, steel billets are indispensable in the manufacturing of agricultural equipment as they provide the necessary strength, durability, and versatility required for the demanding conditions of modern farming. Their contribution ensures that farmers have access to reliable and efficient machinery, ultimately increasing productivity and supporting sustainable agricultural practices.
Q:How do steel billets contribute to the overall strength of a structure?
Steel billets contribute to the overall strength of a structure by serving as the raw material for various structural components. They are made from molten steel that is solidified into a rectangular shape, resulting in a dense and homogeneous material. These billets are then further processed and formed into beams, columns, and other load-bearing elements. Their high strength and durability allow them to withstand heavy loads and forces, enhancing the overall structural integrity of the building or infrastructure.
Q:What are the different methods used for heating steel billets?
Heating steel billets can be achieved through various methods, each tailored to meet specific application requirements and constraints. Some commonly employed techniques include: 1. Induction Heating: By passing an alternating current through a coil, electromagnetic induction generates a magnetic field that induces electrical currents in the billet, subsequently producing heat. This method provides precise and controllable heating, ensuring uniformity throughout the billet. 2. Gas Furnaces: Utilizing burners, gas furnaces generate heat that is then transferred to the steel billets via convection. Commonly fueled by natural gas or propane, these furnaces offer flexibility in terms of temperature control, heating rate, and energy efficiency. 3. Electric Resistance Heating: This method involves passing electric current through resistive elements, such as heating elements or heating pads, in direct contact with the steel billets. The resistance to the electric current generates heat, which is then transferred to the billets. Electric resistance heating is typically used for smaller-scale operations or applications with specific heating requirements. 4. Flame Heating: Flame heating employs an open flame, usually produced by a gas burner, to heat the steel billets. The billets absorb the radiant heat emitted by the flame, resulting in heating. Flame heating is commonly utilized for larger billets or applications that necessitate rapid heating. 5. High-Frequency Heating: Through the use of electromagnetic fields, high-frequency heating achieves billet heating. The billets are positioned within a coil, and a high-frequency alternating current is passed through the coil, generating electrical currents in the billets. Heat is produced as a result of the resistance to these electrical currents, ensuring rapid and uniform heating. 6. Laser Heating: High-powered lasers are employed in laser heating to heat the steel billets. The laser beam is focused on the billet's surface, allowing for intense heat generation through the absorption of laser energy. Laser heating provides precise and localized heating, making it suitable for specific applications or for heat treating small areas of the billets. These aforementioned methods represent only a fraction of the techniques commonly employed for heating steel billets. The choice of method depends on various factors, including the required heating rate, temperature control, energy efficiency, and the specific characteristics of the billets.
Q:How are steel billets recycled at the end of their lifespan?
At the end of their lifespan, steel billets are recycled through a process known as steel scrap recycling. This involves collecting the steel billets and segregating them from other materials. The billets are then cleaned to remove any contaminants and sorted based on their composition and quality. The next step in the recycling process is to melt the steel billets in a furnace. The high temperatures in the furnace cause the steel to melt, separating it from any impurities. Various techniques, such as electric arc furnaces or basic oxygen furnaces, can be used for this purpose. Once the steel has melted, it is then cast into new billets or other steel products such as bars, rods, or sheets, depending on the desired end product. The molten steel is poured into molds to form the desired shape and then cooled down to solidify. After solidification, the newly formed steel billets are further processed to remove any surface imperfections and give them the desired dimensions. This can involve processes like hot rolling, cold rolling, or heat treatment to enhance the mechanical properties of the steel. The recycled steel billets can then be used in various industries, including construction, automotive, and manufacturing, to produce a wide range of products. By recycling steel billets, the lifespan of the material is extended, reducing the need for virgin steel production and conserving valuable natural resources. Additionally, recycling steel billets helps to reduce energy consumption and greenhouse gas emissions associated with the production of new steel. Overall, the recycling process for steel billets at the end of their lifespan is a crucial component of the circular economy, promoting sustainability and resource efficiency in the steel industry.
Q:How do steel billets contribute to the manufacturing of renewable energy systems?
The manufacturing of renewable energy systems heavily relies on steel billets, as they serve as the necessary foundation for various components. These billets are essentially semi-finished steel products that are cast into specific shapes, making them highly adaptable and versatile for different renewable energy applications. Wind turbines, for instance, require a sturdy and stable structure to support the blades and generator. Steel billets are used to construct the tower, which acts as the backbone of the wind turbine. These towers must endure harsh weather conditions and bear the weight of the blades, making the strength and durability of steel crucial. Similarly, solar energy systems, particularly photovoltaic (PV) panels, also rely on steel billets. Steel frames are utilized to provide structural support for the PV panels, ensuring they are securely mounted and capable of withstanding various environmental conditions. Additionally, steel billets are used in the production of solar trackers, which optimize the positioning of PV panels to maximize energy generation by tracking the sun's path throughout the day. Moreover, steel billets contribute to the manufacturing of hydroelectric power systems. In hydroelectric power plants, large turbines are utilized to convert the energy from flowing water into electricity. These turbines necessitate strong and reliable components, such as shafts and mechanical parts, which are often made from steel billets. The high strength and corrosion resistance of steel make it an ideal material for these applications. Furthermore, steel billets are employed in the production of energy storage systems, like batteries. These billets are used to create durable and secure enclosures for the batteries, ensuring their protection and safe operation. Steel's ability to withstand high temperatures and resist fire makes it a suitable choice for battery housing and containment. In conclusion, steel billets are indispensable in the manufacturing of renewable energy systems, providing the required strength, durability, and versatility for various components. Whether it is wind turbines, solar panels, hydroelectric turbines, or energy storage systems, steel billets play a critical role in enabling the reliable and efficient generation of renewable energy.
Q:What are the different types of steel billet defects?
There are various types of steel billet defects, including surface defects like cracks, laps, and scars, as well as internal defects such as segregation, porosity, and inclusions.
Q:How do steel billets contribute to the sustainability of construction projects?
Steel billets contribute to the sustainability of construction projects in several ways. Firstly, steel is a highly durable and long-lasting material, ensuring that structures built with steel billets have a longer lifespan and require less maintenance and repairs over time. This longevity reduces the need for frequent reconstruction, saving resources and minimizing waste. Additionally, steel is a recyclable material, meaning that steel billets can be reused or repurposed at the end of their life cycle, reducing the demand for new steel production and lowering the environmental impact. Lastly, steel's strength-to-weight ratio allows for lighter and more efficient designs, resulting in reduced material consumption and energy usage during construction. Overall, the use of steel billets in construction projects promotes sustainability by enhancing durability, facilitating recycling, and optimizing resource efficiency.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords