• Z41 BMP Rolled Steel Coil Construction Roofing Construction System 1
  • Z41 BMP Rolled Steel Coil Construction Roofing Construction System 2
  • Z41 BMP Rolled Steel Coil Construction Roofing Construction System 3
  • Z41 BMP Rolled Steel Coil Construction Roofing Construction System 4
  • Z41 BMP Rolled Steel Coil Construction Roofing Construction System 5
  • Z41 BMP Rolled Steel Coil Construction Roofing Construction System 6
Z41 BMP Rolled Steel Coil Construction Roofing Construction

Z41 BMP Rolled Steel Coil Construction Roofing Construction

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Z41 BMP Rolled Steel Coil Construction Roofing Construction Z41 BMP Rolled Steel Coil Construction Roofing Construction

Description of Z41 BMP Rolled Steel Coil Construction Roofing Construction

PPGI is made by cold rolled steel sheet and galvanized steel sheets as baseplate,  through the surface pretreatment (degreasing, cleaning, chemical conversion processing), coated by the method of continuous coatings (roller coating method), 

and after roasting and cooling. Zinc coating: Z60, Z80, Z100, Z120, Z180, Z275, G30, G60, G90
Alu-zinc coating: AZ60, AZ80, AZ100, AZ120, AZ180, G30, G60, G90 

 

Z41 BMP Rolled Steel Coil Construction Roofing Construction

Main Feature of Z41 BMP Rolled Steel Coil Construction Roofing Construction

1) Excellent corrosion resistance: The zinc layer provides a good protection of Pre-painted Galvanizeed Steel Sheet.
2) High heat resistance: The reflective surface of the material aids in efficiently reflecting the sunlight away and in turn reducing the amount of heat transmitted. The thermal reflectivity converts into energy savings.
3) Aesthetics: Pre-Painted Galvanized steel sheet is available in plethora of patterns and multiple sizes as per the requirements that given by our customers.
4) Versatility: can be used in the various areas.
Standard seaworthy export packing: 3 layers of packing, inside is kraft paper, water plastic film is in the middle and outside GI steel sheet to be covered by steel strips with lock, with inner coil sleeve.

 

Applications of Z41 BMP Rolled Steel Coil Construction Roofing Construction

1. Construction and building: roofing; ventilating duct; handrail; partition panel;etc.

2. Electric appliance: refrigerator; washing machine; refrigerator; DVD;etc.

3.Transportation: oil tank; road sign; etc.
4.Agriculture:barn; etc.

5.Others:vending machine; game machine; etc.   Z41 BMP Rolled Steel Coil Construction Roofing ConstructionSpecifications of Z41 BMP Rolled Steel Coil Construction Roofing Construction

Classified symbolYield Point Minimum N/mm2Tensile Strength MinimumElongation Minimum %Application
N/mm2Nominal Thickness mm (t)
JISYogic
0.25-0.40.4-0.60.6-1.01.0-1.6
G3312specification
CGCCCGCC-205-270-20-21-24-24Commercial
CGCDCGCD---270---273132Drawing
---CG34024534020202020Structural
CGC400CG40029540016171818Structural
CGC440CG44033544014151618Structural
CGC490CG49036549012131416Structural
CGC570CG570560570------------Structural









ASTM DesignationYield Point MinimumTensile Strength MinimumElongation Minimum %Application
Q/BQB 445-2004(China standard)ASM A653/A653MJISG 3312
ksi(MPa)ksi(MPa)
TDC51D+Z(CS TYPE A+Z)CGCC
A653(M)-99 CS TYPE A,B,C---------Commercial
TDC52D+Z
CGCD
A653(M)-99 FS---------Lock Forming
TS250GD+Z(G250+Z)-
A653(M)-99 DS---------Drawing
TS300GS+Z(G300+Z)CGC 400
A653(M)-99 SS Grade33(230)33(230)45(310)20Structural
TS350GD+Z(G350+Z)CGC490
A653(M)-99 SS Grade37(255)37(255)52(360)18Structural
TS550GD+Z(G550+Z)CGC570
A653(M)-99 SS Grade40(275)40(275)55(380)16Structural



A653(M)-99 SS Grade50(345)50(345)65(450)12Structural



A653(M)-99 SS Grade80(550)80(550)82(570)---Structural



FAQ of Z41 BMP Rolled Steel Coil Construction Roofing Construction

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  1, ISO, BV, CE, SGS approved.
  2, Competitive price and quality. 
  3, Efficient service team online for 24 hours. 
  4, Smooth production ability(50000tons/month) .
  5, quick delivery and standard exporting package. 
  6, Flexible payment with T/T, L/C, Paypal, Kunlun bank, etc .


Q:How are steel billets handled during transportation?
Steel billets are typically handled during transportation using specialized equipment such as cranes or forklifts. They are typically secured with chains or straps to prevent any movement or shifting during transit. Additionally, proper packaging and labeling are important to ensure safe and efficient handling during transportation.
Q:What are the international standards or certifications for steel billets?
Steel billets are subject to various international standards and certifications, which guarantee their quality, safety, and compliance with industry regulations. One widely recognized standard is the ISO 9001 certification, which establishes criteria for a quality management system. This certification ensures that steel billet production adheres to international quality standards and consistently meets customer requirements. In addition to ISO 9001, the steel industry has other specific certifications. The ISO 14001 certification focuses on environmental management systems, ensuring that steel billet production follows sustainable practices. This certification demonstrates a commitment to minimizing environmental impact and promoting sustainable development. Another crucial certification is the ISO 45001, which emphasizes occupational health and safety management. This certification verifies that steel billet manufacturers have implemented effective safety protocols and procedures to protect employees and prevent workplace accidents. Moreover, the American Society for Testing and Materials (ASTM) establishes standards for steel billets, such as ASTM A615/A615M for deformed and plain carbon-steel bars used in concrete reinforcement. These standards outline mechanical properties, chemical composition, and testing methods for steel billets used in construction applications. Similarly, the European Committee for Standardization (CEN) sets standards for steel billets through the European Norm (EN) system. For example, EN 10025 specifies technical delivery conditions for structural steel products, including steel billets, used in various European industries. Adhering to these international standards and certifications is crucial for steel billet manufacturers. It ensures the quality, safety, and compliance of their products. Conforming to these standards not only enhances the manufacturer's credibility and reputation but also provides customers with confidence that the steel billets they purchase meet the highest industry standards.
Q:How are steel billets used in the production of agricultural irrigation systems?
Steel billets are commonly used in the production of agricultural irrigation systems as they serve as the raw material for manufacturing various components such as pipes, fittings, and connectors. These billets are heated, molded, and shaped into the desired form, ensuring the strength and durability needed to withstand the demands of irrigation systems in agricultural settings.
Q:How are steel billets classified based on their chemical composition?
Steel billets can be classified based on their chemical composition using different grading systems. One common classification method is based on the carbon content of the billets. This method categorizes steel billets into three main groups: low carbon steel billets, medium carbon steel billets, and high carbon steel billets. Low carbon steel billets typically have a carbon content of less than 0.25%. These billets are known for their excellent ductility and weldability. They are commonly used in applications that require good formability and low strength, such as construction materials and automotive components. Medium carbon steel billets usually have a carbon content ranging from 0.25% to 0.60%. These billets have improved strength and hardness compared to low carbon steel billets. They are commonly used in applications that require higher strength, such as machinery parts, shafts, and gears. High carbon steel billets have a carbon content greater than 0.60%. These billets are known for their exceptional strength and hardness. They are commonly used in applications that require high wear resistance, such as cutting tools, springs, and knives. Apart from the carbon content, other chemical elements present in the steel billets can also affect their classification. For example, the presence of alloying elements like chromium, nickel, and molybdenum can enhance the properties of the steel, such as corrosion resistance or heat resistance. Steel billets can be further classified based on the specific alloying elements present and their concentrations. Overall, the classification of steel billets based on their chemical composition allows for better understanding and selection of the appropriate material for specific applications, ensuring the desired properties and performance of the final product.
Q:What are the different types of steel billet extrusion processes?
The manufacturing industry utilizes various steel billet extrusion processes, each with its own distinct characteristics. These processes employ high pressure to shape solid steel billets into desired profiles or shapes. 1. The most frequently employed method is direct extrusion. This process involves placing the billet within a container, commonly referred to as a "container" or "container die." The container possesses a small opening, known as a "die," through which the billet is propelled using a ram or piston. The billet is then forced through the die, resulting in the formation of the desired shape. 2. Another technique, indirect extrusion, involves a stationary container die. The billet is pushed through the die using a punch or ram. The billet is positioned inside a hollow chamber called a "container" or "container die," featuring a smaller opening at one end. Pressure is applied to the billet using the punch, compelling it to flow through the die and adopt the desired profile. 3. Impact extrusion shares similarities with direct extrusion but incorporates a specially designed punch. This punch strikes the billet with a significant impact force, causing it to flow and take on the shape of the die. Impact extrusion is frequently utilized to produce small, intricate shapes with thin walls. 4. Hydrostatic extrusion employs a sealed chamber filled with a pressurized fluid, typically oil or water, in which the billet is placed. The fluid pressure is utilized to force the billet to flow through the die and acquire the desired shape. Hydrostatic extrusion is commonly employed for the production of complex shapes with high precision. 5. Cold extrusion is performed at room temperature without the need for heating the steel billet. This method is often used to produce small, intricate parts with high dimensional accuracy. It offers a cost-effective approach, enabling the production of parts with excellent surface finish. The selection of a specific steel billet extrusion process depends on various factors, including the desired shape, size, material properties, and production requirements. Each process has its own advantages and limitations.
Q:How do steel billets contribute to the overall vibration resistance of a product?
The overall vibration resistance of a product can be significantly enhanced through the use of steel billets. Steel, with its high-strength properties, is an ideal material for reducing vibrations and improving product stability. In the manufacturing process, steel billets are commonly used as a raw material and are further processed into various shapes and forms. Steel billets possess a dense and uniform structure that enables them to effectively absorb and dissipate vibration energy. When integrated into a product, steel billets provide additional mass, which assists in dampening vibrations by absorbing and distributing energy throughout the structure. This added mass acts as a stabilizing force, preventing excessive movement and reducing the amplitude of vibrations. Furthermore, steel billets demonstrate exceptional mechanical properties, including high tensile strength and stiffness, which contribute to a product's overall vibration resistance. These properties allow steel billets to withstand dynamic forces and resist deformation caused by vibrations, ensuring the product's structural integrity. In addition to their superior mechanical properties, steel billets can be designed with specific geometries and cross-sectional shapes to further enhance their vibration resistance. For instance, the use of round or square billets with smooth surfaces minimizes stress concentration points and lowers the risk of fatigue failure. By optimizing the design and dimensions of steel billets, manufacturers can tailor a product's vibration resistance to meet specific requirements. To summarize, steel billets play a critical role in enhancing a product's overall vibration resistance. Their high mass, dense structure, and excellent mechanical properties allow them to effectively absorb and dissipate vibration energy, stabilize the product, and improve its structural integrity. By incorporating steel billets into the manufacturing process, manufacturers can ensure that their products are more resistant to vibrations, leading to enhanced performance and longevity.
Q:What are the different forming processes used for steel billets?
The different forming processes used for steel billets include hot rolling, cold rolling, extrusion, forging, and casting.
Q:How are steel billets used in the production of wind turbine components?
Steel billets serve as a crucial raw material in the production of wind turbine components. These large blocks of semi-finished steel are essential for various manufacturing processes. The fabrication of tower sections is one of the primary uses of steel billets in wind turbine production. The tower is a vital component that supports the entire turbine structure and must withstand strong winds and environmental conditions. To create the tower sections, the steel billets are heated and then rolled or forged into the desired shape and size. The sections are then welded together to form the complete tower structure. In addition to tower sections, steel billets are also utilized in manufacturing other wind turbine components such as the hub, nacelle, and main shaft. The hub holds the rotor blades and the nacelle houses the generator and other critical parts. Both of these components require high-strength steel, which can be obtained through the processing of steel billets. Similarly, the main shaft, which connects the rotor hub to the gearbox, needs to be extremely durable and capable of withstanding the torque generated by the blades. The utilization of steel billets in wind turbine production is driven by the exceptional mechanical properties of the material. Steel provides high strength, enabling the turbine components to withstand the extreme forces they encounter during operation. Additionally, steel possesses excellent fatigue resistance, which is crucial considering the continuous rotation and cyclic loading of wind turbines. In conclusion, steel billets play a vital role in ensuring the structural integrity and reliability of wind turbine components. By incorporating steel billets into the manufacturing process, manufacturers can produce strong and durable components that contribute to the efficient and sustainable generation of wind power.
Q:What types of steel are commonly used for billets?
The types of steel commonly used for billets include carbon steel, alloy steel, and stainless steel.
Q:How can the quality of steel billets be improved?
The quality of steel billets can be improved through various methods and techniques. Here are a few approaches that can help enhance the quality of steel billets: 1. Raw Material Selection: The quality of steel billets largely depends on the selection of raw materials. Choosing high-quality raw materials, such as high-grade iron ore and scrap metal, can significantly improve the quality of billets. 2. Melting and Refining: The melting and refining process plays a crucial role in improving steel billet quality. Utilizing advanced melting practices, such as electric arc furnaces (EAF) or induction furnaces, can help achieve a more homogeneous and controlled melting process, reducing impurities and achieving a desired chemical composition. 3. Deoxidation and Degassing: Proper deoxidation and degassing techniques should be employed to remove impurities and gases from the molten metal. This can be achieved by adding suitable deoxidizers and utilizing vacuum degassing processes that effectively remove unwanted gases, thereby enhancing the steel billets' quality. 4. Continuous Casting Process: Implementing a modern continuous casting process can significantly improve the quality of steel billets. Continuous casting ensures a more uniform structure, reduces segregation, and minimizes the formation of defects commonly associated with traditional ingot casting methods. 5. Heat Treatment: Applying suitable heat treatment processes, such as annealing, quenching, and tempering, can further enhance the mechanical properties and overall quality of steel billets. Heat treatment helps refine the microstructure, improving the steel's strength, hardness, and other desired characteristics. 6. Quality Control: Implementing a robust quality control system is crucial in ensuring the production of high-quality steel billets. Regular monitoring and testing should be conducted throughout the production process to identify and rectify any deviations or quality issues promptly. 7. Skillful Workforce: Employing a skilled and knowledgeable workforce is vital for improving the quality of steel billets. Well-trained technicians and operators can effectively implement various quality improvement techniques and address any production challenges that may arise. By incorporating these methods and techniques, steel manufacturers can enhance the quality of steel billets, resulting in improved mechanical properties, superior surface finish, and increased customer satisfaction.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords