• Prime quality prepainted galvanized steel 690mm System 1
  • Prime quality prepainted galvanized steel 690mm System 2
  • Prime quality prepainted galvanized steel 690mm System 3
  • Prime quality prepainted galvanized steel 690mm System 4
  • Prime quality prepainted galvanized steel 690mm System 5
  • Prime quality prepainted galvanized steel 690mm System 6
Prime quality prepainted galvanized steel 690mm

Prime quality prepainted galvanized steel 690mm

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Construction building material galvanized color prepainted cold

rolled steel coil

 

Prepainted steel sheet is coated with organic layer, which provides higher anti-corrosion property and

a longer lifespan than that of galvanized steel sheets.

 

The base metals for prepainted steel sheet consist of cold-rolled, HDG electro-galvanized and hot-dip

Alu-zinc coated. The finish coats of prepainted steel sheets can be classified into groups as follows:

polyester, silicon modified polyesters, polyvinylidene fluoride, high-durability polyester, etc

Prime quality prepainted galvanized steel 690mm

 

Standard and Grade :

Pre-paint galvanized steel coil



ASTM A755M-03

EN10169:2006

JISG 3312-2012

Commercial quality

                  CS

DX51D+Z

CGCC

 

 

 

Structure steel

SS GRADE 230

S220GD+Z

CGC340

SS GRADE 255

S250GD+Z

CGC400

SS GRADE 275

S280GD+Z

CGC440

SS GRADE 340

S320GD+Z

CGC490

SS GRADE550

S350GD+Z

CGC570


S550GD+Z


Application:

Outdoor

Roof, roof structure, surface sheet of balcony, frame of window, door of garage, rolled shutter door, booth, Persian blinds, cabana, etc

Indoor

Door, isolater, frame of door, light steel structure of house, home electronic appliances, ect.

Specifications

Commodity Name: Prepainted Galvanized Steel Coil

Standard: AISI, ASTM, DIN, GB, JIS   

Grade: TDC52D+Z   

Thickness 0.13-8.0mm  

Width:600mm-1350mm

Zinc Coating:275g/m2

Polyester Coating Thickness:Top and Back coating thickness depend by Buyer Requirement.

Polyester Coating Type:2/2,1/2m,1/2.

Polyester Type: Polyester, silicone modified polyester, high durability polyester (HDP), polyvinylidene fluoride (PVDF)

Unit Roll Weight:5-20tons

Place of Origin Shanghai , China (Mainland)  

Surface Treatment :Color Coated

Manufacture Progress:HRC-CRC-GALVANIZED-COLOR COATED  

Application : Construction, electrical, transportation, steel plant, composite board plant, steel tile factory  

Payment & Shipping Terms:T/T ,L/C, and FOB CHINA 

Minimum Order Quantity: 25Tons  

Packge Type: Moisture-proof paper inner,Steel outside,Bundle by steel rope.

Package in Container : Wood as a foot pad, wire rope reinforcement,PPGI steel coil tied together by steel rope.


Q:How are steel billets handled during transportation?
To ensure the safety and integrity of steel billets during transportation, great care is typically taken. Specialized equipment, such as cranes, forklifts, or conveyors, is commonly used to lift and transport the heavy billets. Before being transported, the billets are often bundled or secured together to prevent shifting or falling. This bundling process may involve tightly holding the billets with steel straps or bands, ensuring they remain stable throughout transportation. Protective measures are also frequently implemented to prevent external damage. For example, the billets can be covered with protective coatings, such as oil or rust inhibitors, to shield them from moisture and corrosion. This is especially important when transporting billets over long distances or in unfavorable weather conditions. When it comes to loading the billets onto trucks, trains, or ships, careful attention is paid to balancing the weight distribution to avoid any imbalances or tipping during transit. The transportation vehicles used are designed to handle heavy loads and often have additional mechanisms, like straps, latches, or containers, to further secure the billets. During transit, the vehicles carrying the steel billets are operated with caution to minimize sudden movements or impacts. Drivers may need to follow specific routes or adhere to speed limits to ensure a smooth and safe journey. Regular inspections and maintenance of the transportation vehicles are carried out to ensure their reliability and prevent any mechanical failures that could jeopardize the safety of the billets. In conclusion, the transportation of steel billets requires meticulous planning, secure bundling, protective measures, and safe handling techniques. These practices are implemented to safeguard the billets and ensure they reach their destination in optimal condition, ready for further processing or utilization in various industries.
Q:Billet prices skyrocketing weekend, Southern China steel prices rose?
In December 5th, the billet price in Hebei was 2780 yuan per ton, a new high since two years and three months, a rise of more than 85% over the same period of last year.
Q:What is the role of steel billets in the manufacturing of cutting tools?
Steel billets play a crucial role in the manufacturing of cutting tools. They serve as the raw material from which the cutting tool is forged or machined. Steel billets are typically made from high-quality steel alloys, which possess properties like hardness, toughness, and wear resistance that are essential for cutting tools. The first step in the manufacturing process involves heating the steel billets to a specific temperature, known as the forging temperature. This temperature allows the steel to become malleable, making it easier to shape and form into the desired cutting tool. The heated billets are then subjected to a forging process, where they are struck or pressed using specialized equipment to shape them into the desired form, such as drills, saws, or blades. After the initial forging, the billets are further machined to refine their shape and dimensions. Machining processes like milling, turning, and grinding are used to remove excess material, achieve the precise dimensions required for the cutting tool, and create the desired cutting edge geometry. The quality of the steel billets used in the manufacturing process greatly influences the performance and durability of the cutting tool. Steel billets with high carbon content and alloying elements like chromium, vanadium, or tungsten are often preferred, as they enhance the hardness, strength, and wear resistance of the cutting tool. These properties are crucial for ensuring that the cutting tool can withstand the high forces, temperatures, and abrasive conditions it will encounter during use. In summary, steel billets are the starting point for manufacturing cutting tools. They provide the necessary raw material and properties required to create high-quality cutting tools that exhibit excellent performance, durability, and precision.
Q:What are the different types of steel billet rolling mill defects?
Some common types of steel billet rolling mill defects include surface cracks, internal cracks, surface defects such as pits or scratches, shape defects such as bowing or twisting, and dimensional defects such as thickness variations or width deviations.
Q:How do steel billets contribute to the manufacturing of HVAC equipment?
The manufacturing of HVAC equipment relies heavily on steel billets, which are essential components. These billets, created from molten steel and considered semi-finished products, play a vital role in the production process. To begin with, steel billets act as the raw material for various HVAC components like coils, pipes, and fittings. These components are fundamental for the proper functioning of HVAC systems, which depend on the circulation of air or refrigerant to regulate temperature. By providing the necessary strength and durability, steel billets ensure that these components can withstand the rigorous conditions within HVAC systems. Furthermore, steel billets allow for the creation of intricate shapes and structures needed in HVAC equipment. With their high tensile strength and malleability, steel billets can be easily molded and shaped into complex designs. This flexibility grants manufacturers the ability to produce customized HVAC equipment that meets specific requirements, whether it's for residential, commercial, or industrial use. Moreover, steel billets enhance the overall efficiency and lifespan of HVAC equipment. Thanks to their high thermal conductivity, steel components can efficiently transfer heat or cold, promoting effective temperature regulation. This aids HVAC systems in achieving optimal energy efficiency, reducing energy consumption and costs. Additionally, steel's resistance to corrosion ensures that HVAC equipment can endure exposure to various environmental factors, increasing their longevity and reliability. In conclusion, steel billets are of utmost importance in the manufacturing of HVAC equipment due to their role as raw material, flexibility in design, and durability. Their contributions ultimately result in the production of efficient, reliable, and long-lasting HVAC systems, benefiting both consumers and industries.
Q:How are steel billets reheated before rolling or forging?
Steel billets are reheated before rolling or forging through a process known as billet heating. This process involves subjecting the billets to high temperatures to make them more malleable and easier to shape. There are several methods commonly used for billet heating, including: 1. Furnaces: The most common method of reheating steel billets is through the use of furnaces. These furnaces are typically gas-fired and can reach temperatures of up to 1,200 degrees Celsius. The billets are loaded into the furnace and heated for a specific period of time to achieve the desired temperature. The furnace provides a controlled environment, allowing for even heating and uniformity. 2. Induction heating: Another method used for reheating steel billets is induction heating. This process utilizes electromagnetic induction to heat the billets. An alternating current is passed through a copper coil, creating a magnetic field. The billets are then placed inside the coil, and the magnetic field induces eddy currents within the billets, generating heat. Induction heating offers precise temperature control and rapid heating rates, making it suitable for high-speed production. 3. Electric resistance heating: Electric resistance heating is another technique employed for reheating steel billets. This method involves passing an electric current through the billets, causing them to heat up due to the resistance encountered. Electric resistance heating can be achieved using various types of heating elements, such as graphite electrodes or resistance heating wires. This method offers precise temperature control and is commonly used for smaller-scale operations. Regardless of the heating method used, it is essential to carefully control the temperature and heating time to ensure the billets reach the optimal temperature for rolling or forging. The reheating process allows the steel to become more pliable, reducing its hardness and increasing its ductility, making it easier to shape and form into the desired end product.
Q:How are steel billets used in the manufacturing of forgings?
Steel billets are an essential raw material in the manufacturing of forgings. These billets, which are semi-finished steel products, are used as the starting point for shaping and forming various types of forgings. The process begins with the selection of appropriate steel billets based on their chemical composition and mechanical properties. The billets are typically made from high-quality carbon or alloy steel and are carefully inspected to ensure their suitability for the desired end product. Once the billets are selected, they undergo a series of heating and shaping operations. The billets are heated to a specific temperature, known as the forging temperature, in a furnace to make them more malleable. This temperature is carefully controlled to ensure optimal plasticity and minimize any potential defects. After reaching the forging temperature, the billets are transferred to a forging press or hammer. These powerful machines apply immense pressure to shape the billet into the desired form. The force exerted by the press or hammer causes the billet to deform and take on the shape of the die or mold being used. The forged billet may undergo several additional steps, such as trimming, piercing, or machining, to achieve the final desired shape. These steps are necessary to remove any excess material or refine the forged part further. Throughout the manufacturing process, the quality of the steel billets plays a crucial role in determining the final quality of the forgings. The billets must have consistent chemical composition, mechanical properties, and freedom from defects. This ensures that the forged parts have the desired strength, durability, and dimensional accuracy. In summary, steel billets are used in the manufacturing of forgings as the initial material that undergoes heating, shaping, and other processes to create the final forged part. The quality of the billets directly impacts the quality of the forgings, making the selection and inspection of billets a critical step in the overall manufacturing process.
Q:What are the potential applications of steel billets in the transportation industry?
Steel billets have a wide range of potential applications in the transportation industry. One of the main uses of steel billets in transportation is for the manufacturing of various parts and components for automobiles, such as engine blocks, chassis, suspension systems, and wheels. Steel billets provide the necessary strength and durability required for these critical components, ensuring the safety and reliability of vehicles. Additionally, steel billets are commonly utilized in the production of railway tracks, ensuring the stability and longevity of the rail infrastructure. The high strength and resistance to wear and tear make steel billets an ideal choice for this application, as they can withstand heavy loads and extreme weather conditions. Furthermore, steel billets are used in the construction of ships and boats. The marine industry relies on the strength and corrosion resistance of steel billets to build hulls, decks, and various structural components. Steel billets also play a crucial role in the construction of bridges, providing the necessary strength and structural integrity to support heavy traffic loads. Moreover, steel billets are extensively used in the manufacturing of aircraft parts and components. The aviation industry demands materials with exceptional strength-to-weight ratio, and steel billets meet this requirement. They are utilized in the production of landing gear, engine mounts, and other critical aircraft structures. Overall, the potential applications of steel billets in the transportation industry are vast and varied. Their strength, durability, and resistance to wear and tear make them an essential material for the production of parts and components in automobiles, railway tracks, ships, boats, aircraft, and bridges. Steel billets contribute to the safety, reliability, and efficiency of transportation systems, making them indispensable in this industry.
Q:How do steel billets contribute to the manufacturing of furniture?
Steel billets are an essential raw material in the manufacturing of furniture as they are used to create sturdy and durable frames, legs, and supports. The billets are melted down and shaped into various forms, allowing furniture manufacturers to produce high-quality and robust pieces that can withstand heavy loads and regular use.
Q:How are steel billets used in the manufacturing of automotive components?
Steel billets are used in the manufacturing of automotive components as the starting material for various forging and machining processes. These billets are heated, shaped, and then further processed to create different automotive parts like crankshafts, connecting rods, gears, and axles. The high strength and durability of steel make it an ideal choice for these critical components, ensuring the safety and performance of vehicles.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords