• Prime quality prepainted galvanized steel 695mm System 1
  • Prime quality prepainted galvanized steel 695mm System 2
  • Prime quality prepainted galvanized steel 695mm System 3
  • Prime quality prepainted galvanized steel 695mm System 4
  • Prime quality prepainted galvanized steel 695mm System 5
  • Prime quality prepainted galvanized steel 695mm System 6
Prime quality prepainted galvanized steel 695mm

Prime quality prepainted galvanized steel 695mm

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Construction building material galvanized color prepainted cold

rolled steel coil

 

Prepainted steel sheet is coated with organic layer, which provides higher anti-corrosion property and

a longer lifespan than that of galvanized steel sheets.

 

The base metals for prepainted steel sheet consist of cold-rolled, HDG electro-galvanized and hot-dip

Alu-zinc coated. The finish coats of prepainted steel sheets can be classified into groups as follows:

polyester, silicon modified polyesters, polyvinylidene fluoride, high-durability polyester, etc

Prime quality prepainted galvanized steel 695mm

 

Standard and Grade :

Pre-paint galvanized steel coil



ASTM A755M-03

EN10169:2006

JISG 3312-2012

Commercial quality

                  CS

DX51D+Z

CGCC

 

 

 

Structure steel

SS GRADE 230

S220GD+Z

CGC340

SS GRADE 255

S250GD+Z

CGC400

SS GRADE 275

S280GD+Z

CGC440

SS GRADE 340

S320GD+Z

CGC490

SS GRADE550

S350GD+Z

CGC570


S550GD+Z


Application:

Outdoor

Roof, roof structure, surface sheet of balcony, frame of window, door of garage, rolled shutter door, booth, Persian blinds, cabana, etc

Indoor

Door, isolater, frame of door, light steel structure of house, home electronic appliances, ect.

Specifications

Commodity Name: Prepainted Galvanized Steel Coil

Standard: AISI, ASTM, DIN, GB, JIS   

Grade: TDC52D+Z   

Thickness 0.13-8.0mm  

Width:600mm-1350mm

Zinc Coating:275g/m2

Polyester Coating Thickness:Top and Back coating thickness depend by Buyer Requirement.

Polyester Coating Type:2/2,1/2m,1/2.

Polyester Type: Polyester, silicone modified polyester, high durability polyester (HDP), polyvinylidene fluoride (PVDF)

Unit Roll Weight:5-20tons

Place of Origin Shanghai , China (Mainland)  

Surface Treatment :Color Coated

Manufacture Progress:HRC-CRC-GALVANIZED-COLOR COATED  

Application : Construction, electrical, transportation, steel plant, composite board plant, steel tile factory  

Payment & Shipping Terms:T/T ,L/C, and FOB CHINA 

Minimum Order Quantity: 25Tons  

Packge Type: Moisture-proof paper inner,Steel outside,Bundle by steel rope.

Package in Container : Wood as a foot pad, wire rope reinforcement,PPGI steel coil tied together by steel rope.


Q:How are steel billets used in the manufacturing of power transmission equipment?
Steel billets are an essential component in the manufacturing of power transmission equipment. These billets, which are solid blocks of steel, serve as the raw material for various parts and components of power transmission equipment. One of the primary uses of steel billets is in the production of gears and shafts. Gears are crucial in power transmission equipment as they help transfer rotational motion from one component to another. Steel billets are forged and machined into the desired shape and size to create strong and durable gears that can withstand the high forces and speeds associated with power transmission. Similarly, steel billets are also used in the manufacturing of shafts. Shafts are responsible for transmitting rotational motion and torque between different parts of the power transmission system. The strength and reliability of the shafts are crucial for the efficient functioning of power transmission equipment. Steel billets are shaped and machined to create robust and precise shafts that can endure the loads and stresses involved in power transmission. Furthermore, steel billets are used in the production of various structural components of power transmission equipment, such as housings and frames. These components provide support and protection to the internal mechanisms and ensure the equipment operates smoothly. Steel billets are forged, cut, and welded to fabricate sturdy and rigid structures that can accommodate the complex arrangements and dynamic forces of power transmission systems. In summary, steel billets play a crucial role in the manufacturing of power transmission equipment. They are used to create gears, shafts, and structural components that are essential for the efficient and reliable operation of power transmission systems. The strength, durability, and precision of steel billets contribute to the overall performance and longevity of power transmission equipment.
Q:How are steel billets used in the production of crankshafts?
Crankshafts rely on steel billets for their production, as these billets are essential in forming the foundation of this intricate component. Obtained through continuous casting or rolling of molten steel, steel billets are semi-finished products typically found in square or rectangular shapes. To create a crankshaft, the initial step involves heating the steel billet to a specific temperature, usually achieved through induction heating. This process enhances the billet's malleability, making it easier to shape. Once heated, the billet is placed into a forging machine, where it undergoes a series of compressive forces and plastic deformation. This gradual transformation results in the desired shape of the crankshaft. Throughout the forging process, the steel billet experiences immense pressure to ensure the metal grain structure aligns optimally. This alignment enhances the strength and durability of the crankshaft. Precise shaping of the crankshaft's main bearing journals, crankpin journals, and counterweights is achieved through carefully controlled forging techniques. Following the forging process, the partially finished crankshaft undergoes various machining operations, such as milling, turning, and grinding. These operations refine the crankshaft's dimensions and surface finish to meet the required specifications for smooth operation and efficient power transmission. In conclusion, steel billets are crucial raw materials in the production of crankshafts. Through the forging process, these billets are transformed into strong and resilient crankshafts capable of withstanding the demanding conditions of engines. The use of steel billets contributes to the production of crankshafts with superior strength, durability, and performance, making them vital components in the automotive and machinery industries.
Q:How are steel billets used in the production of steel cables?
Steel cables require steel billets as a key component for their production. These billets act as the primary material from which the cables are made. The billets undergo a range of processes to manufacture the steel cables. Initially, the steel billets are heated in a furnace to extremely high temperatures, which makes them more pliable and easier to manipulate. This technique is referred to as annealing. Afterward, the billets are passed through a sequence of rollers to shape them into the desired form and size required for the cables. Subsequently, the shaped billets are fed through a wire drawing machine, where they are pulled through a series of dies to decrease their diameter and increase their length. This results in the formation of wire rods that resemble wires. These wire rods then undergo further processing in a series of machines to eliminate any impurities or surface defects. They are subsequently coated with lubricants to minimize friction during subsequent processes. The wire rods are then transferred to a wire stranding machine, where multiple wires are twisted together to form strands. These strands are then combined through either twisting or braiding to create the final steel cables. The cables are once again coated with lubricants to enhance their durability and resistance against corrosion. In summary, steel billets are of utmost importance in the production of steel cables, serving as the initial material for the entire manufacturing process. Through a combination of heating, shaping, and drawing processes, the billets are transformed into wire rods, which are further processed to produce the strands and ultimately the final steel cables.
Q:What is the role of steel billets in the manufacturing of structural steel bridges?
Structural steel bridges heavily rely on steel billets, which are essential semi-finished products utilized as the raw material for manufacturing various steel products, including these bridges. The initial step involves heating the steel billets and passing them through a series of rolling mills to shape them accordingly. This rolling process ensures that the billets are converted into elongated, slender sections suitable for bridge construction. Once the steel billets have been rolled into the desired forms, they undergo further processing and fabrication to create the necessary components for structural steel bridges. These components encompass beams, columns, girders, and other vital elements that contribute to the bridge's strength, stability, and load-bearing capabilities. The utilization of steel billets in the production of structural steel bridges provides numerous advantages. Firstly, steel possesses an exceptional strength-to-weight ratio, rendering it an ideal material for constructing bridges capable of withstanding heavy loads while remaining relatively lightweight. Moreover, steel's versatility allows for the creation of intricate bridge designs that can accommodate diverse architectural and engineering requirements. Furthermore, steel billets exhibit high durability and resistance to environmental factors like corrosion, which is crucial for ensuring the long-term integrity and safety of the bridge structure. This durability ultimately contributes to the bridge's extended lifespan, leading to reduced maintenance and replacement costs over time. In conclusion, steel billets serve as the fundamental building blocks for the manufacturing of structural steel bridges. Through the rolling and fabrication processes, these billets are transformed into various components that collectively provide strength, stability, and durability to the bridge. The utilization of steel billets enables the construction of bridges capable of withstanding heavy loads, maintaining a lightweight nature, and enduring environmental factors, thereby ensuring the bridge's long-term integrity and safety.
Q:How has the demand for steel billets changed over time?
The demand for steel billets has experienced fluctuations over time, influenced by various factors. Historically, there has been a steady growth in the demand for steel billets due to the increasing industrialization and urbanization worldwide. As construction and infrastructure projects expanded, the demand for steel billets, which serve as the raw material for various steel products, also increased. However, the demand for steel billets has not been immune to economic cycles. During periods of economic downturns, such as the global financial crisis in 2008, the demand for steel billets declined as construction and manufacturing activities slowed down. This led to a surplus of steel billets in the market, resulting in decreased prices and reduced demand from steel mills. In recent years, the demand for steel billets has been influenced by global trends and geopolitical factors. The increasing focus on sustainable development and environmental concerns has led to a growing demand for green construction materials, including steel produced from recycled sources. This has prompted steel manufacturers to adapt their production processes to meet these demands and ensure the availability of environmentally friendly steel billets. Moreover, geopolitical factors such as trade disputes and tariffs have also impacted the demand for steel billets. The imposition of tariffs on steel imports by certain countries has led to a decrease in demand for imported steel billets, while simultaneously increasing demand for domestically produced steel billets. Furthermore, the COVID-19 pandemic had a significant impact on the demand for steel billets. Lockdowns, travel restrictions, and disrupted supply chains caused a decline in construction activities and manufacturing output, leading to a decrease in demand for steel billets. However, as economies recover and governments implement stimulus measures to boost infrastructure projects, the demand for steel billets is expected to gradually rebound. In summary, the demand for steel billets has experienced fluctuations over time, influenced by economic cycles, global trends towards sustainability, geopolitical factors, and the COVID-19 pandemic. The long-term growth in demand for steel billets remains closely tied to construction and infrastructure development, making it vital for steel manufacturers to adapt to changing demands and market conditions.
Q:Can steel billets be used in the production of jewelry?
Due to its composition and properties, steel billets are usually not utilized in jewelry production. Steel, which is primarily made up of iron and carbon and contains additional elements like manganese, chromium, and nickel, possesses strength and durability that make it well-suited for various industrial applications, but not for crafting jewelry. In contrast, jewelry is typically crafted from precious metals like gold, silver, and platinum, which possess unique characteristics that make them suitable for adornment. These metals are easily shaped and molded into intricate designs due to their malleability. Moreover, they have a lustrous appearance and are resistant to tarnishing or corrosion. On the other hand, steel is much harder and less malleable compared to precious metals. It cannot be easily manipulated into the delicate and intricate shapes required for jewelry making. Additionally, steel has a dull gray color that does not offer the desired aesthetic appeal in jewelry. While it is technically possible to create jewelry using steel billets, it is not a common practice due to the aforementioned reasons. Steel is primarily utilized in industries where its high strength and durability are necessary, such as construction, automotive, and machinery manufacturing.
Q:How are steel billets tested for quality?
Steel billets are tested for quality through various methods such as visual inspection, dimensional analysis, mechanical testing, and chemical analysis. Visual inspection ensures that the billets are free from surface defects, cracks, and other abnormalities. Dimensional analysis checks whether the billets meet the specified size and shape requirements. Mechanical testing involves evaluating the billets' strength, hardness, and other mechanical properties. Chemical analysis assesses the composition of the steel to ensure it meets the required standards. These comprehensive tests help ensure the quality and reliability of steel billets.
Q:How are steel billets used in the manufacturing of marine components?
Due to their strength, durability, and versatility, steel billets are indispensable raw materials utilized in the production of marine components. Essentially, steel billets are semi-finished steel products that are cast into specific shapes, typically squares or rectangles, via continuous casting. These billets serve as the initial stage for a variety of marine components. Hot rolling is a primary method employed in the manufacturing of marine components using steel billets. In this process, the steel billet is heated to high temperatures and then passed through a series of rollers to shape it into the desired form. This can involve transforming the billet into rods, bars, beams, or other structural shapes commonly utilized in marine applications. Forging is another technique employed in the manufacturing of marine components using steel billets. This process involves heating the billet to high temperatures and subsequently applying pressure to shape it into the desired form. Forging is commonly employed to manufacture marine components such as propeller shafts, crankshafts, and other high-strength parts that necessitate precise shaping and exceptional mechanical properties. Furthermore, steel billets can be utilized in the manufacturing of marine components through the process of machining. Machining entails the removal of material from the billet using various cutting tools to create intricate shapes and features. This method is commonly employed to produce marine components such as valves, fittings, and other precision parts that require meticulous tolerances and intricate designs. In conclusion, steel billets play a pivotal role in the manufacturing of marine components. Their strength, durability, and versatility make them an ideal raw material for producing various marine parts through processes such as hot rolling, forging, and machining. By utilizing steel billets, manufacturers can ensure that the marine components they produce are capable of withstanding the harsh conditions and demanding requirements of the marine environment.
Q:What is the role of steel billets in the manufacturing of pressure vessels?
Steel billets play a crucial role in the manufacturing of pressure vessels. Pressure vessels are designed to hold and contain fluids or gases at a higher pressure than the atmospheric pressure. These vessels are used in various industries such as oil and gas, chemical, pharmaceutical, and many more. The role of steel billets in the manufacturing process is to serve as the raw material for constructing the pressure vessel. Steel billets are semi-finished products that are obtained through the continuous casting or hot rolling of steel ingots. They have a rectangular or square cross-section and are typically made from carbon steel or alloy steel. Steel billets possess several key properties that make them ideal for pressure vessel manufacturing. Firstly, they have excellent strength and toughness, which is crucial for withstanding the high internal pressure exerted by the fluids or gases inside the vessel. This ensures the structural integrity and safety of the vessel. Secondly, steel billets have good weldability, which is essential for fabricating the pressure vessel. Welding is a common joining technique used in pressure vessel manufacturing, and the weld joints must have comparable strength to the base material. Steel billets allow for strong and reliable welds to be made during the fabrication process. Moreover, steel billets can be easily formed and shaped into the desired size and dimensions required for the pressure vessel. They can be forged, rolled, or extruded to create the necessary components of the vessel, such as the cylindrical body, heads, nozzles, and flanges. This versatility in shaping allows for customization based on the specific requirements of the pressure vessel. Furthermore, steel billets are known for their corrosion resistance, which is important for pressure vessels that come into contact with corrosive fluids or gases. The selection of the appropriate steel grade for the billets ensures that the pressure vessel can withstand the corrosive environment and maintain its integrity over time. In conclusion, steel billets are essential in the manufacturing of pressure vessels as they provide the raw material with the necessary properties to withstand high-pressure conditions. Their strength, weldability, formability, and corrosion resistance make them an ideal choice for constructing reliable and durable pressure vessels used in various industries.
Q:What are the main factors affecting the cost of steel billets?
There are several main factors that can affect the cost of steel billets. 1. Raw material costs: The cost of the raw materials used to produce steel billets, such as iron ore and scrap metal, can have a significant impact on the overall cost. Fluctuations in the prices of these raw materials in the global market can cause the cost of steel billets to rise or fall. 2. Production and processing costs: The cost of manufacturing steel billets includes various production and processing expenses, such as energy costs, labor costs, and maintenance costs. These costs can vary depending on factors such as the efficiency of production processes, the availability of skilled labor, and the cost of energy sources. 3. Supply and demand dynamics: The balance between supply and demand for steel billets in the market can heavily influence their cost. If there is a high demand for steel billets and limited supply, the prices can increase. Conversely, if there is excess supply and low demand, the prices can decrease. 4. Market competition: The level of competition among steel producers can also impact the cost of steel billets. In a competitive market, where multiple producers are vying for customers, the prices may be driven down as producers try to attract buyers. Conversely, in a less competitive market, producers may have more pricing power, leading to higher prices. 5. Trade policies and tariffs: Government policies and trade barriers, such as import tariffs and quotas, can affect the cost of steel billets. These measures can either protect domestic steel producers by making imported steel more expensive or create opportunities for cheaper imports, depending on the specific policies in place. 6. Currency exchange rates: Since steel billets are traded globally, fluctuations in currency exchange rates can impact their cost. A stronger domestic currency can make imported steel billets cheaper, while a weaker domestic currency can make them more expensive. 7. Transportation and logistics: The cost of transporting steel billets from the production facility to the end-user can also influence their overall cost. Factors such as distance, transportation mode, and fuel prices can impact the transportation expenses, which can, in turn, affect the final price of steel billets. It is important to note that these factors can interact with each other, and their impact on the cost of steel billets can vary depending on the specific market conditions and industry dynamics.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords