• Hot Rolled Spring Flat Bar System 1
  • Hot Rolled Spring Flat Bar System 2
  • Hot Rolled Spring Flat Bar System 3
Hot Rolled Spring Flat Bar

Hot Rolled Spring Flat Bar

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering high quality Steel Flat Bar at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Steel Flat Bar are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Steel Flat Bar are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Commodity: Mild Steel Flat Bar

Standard: GB;JIS

Material: Q195-235;SS400

Origin place: China

Thickness: 3mm-30mm

Width:20mm-200mm

Length: Max 12m

Certification: SGS/BV

 



Usage/Applications of Steel Flat Bar

Widely used for construction, Machinery manufacturing, Iron tower steel structure, Shipbuilding; Steel grating, Staircase, Bridge, Viaduct, Railway spare parts, Boilers making etc.

Packaging & Delivery of Mild Steel Flat Bar

Packaging Details: The Mild Steel Flat Bars are packed in bundles and loaded in 20 feet/40 feet container, or shipped by bulk cargo ,also we can do as customer's requirements.

Delivery Details:30~45 days upon the receipt of buyer payment by T.T. or L/C.

Production Flow of Steel Flat Bar

The Mild steel flat bar is made through three processes:

1.Feeding the material: Feeding the row material (the steel plate) to Slitting Line.

2.Slitting:The steel plate would be slitted into expected width by lengthways cutter.

3. Leveled and cutting: The plat bar would be ground into level by the grinder and then cut into required length


FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q4: What makes stainless steel stainless?

A4: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.

Q:How is high-strength alloy steel used in the production of structural components?
High-strength alloy steel is commonly used in the production of structural components due to its exceptional strength-to-weight ratio. It provides superior tensile strength and toughness, making it suitable for supporting heavy loads and withstanding high stress and impact. This steel is often used in the construction of buildings, bridges, and other infrastructure, as well as in the manufacturing of machinery and vehicles. Its application helps enhance structural integrity, durability, and safety while minimizing the weight and material requirements of these components.
Q:How does special steel perform in corrosive environments?
Special steel is specifically designed to perform well in corrosive environments. It is made with a higher content of alloying elements such as chromium, which forms a protective oxide layer on the surface of the steel. This oxide layer acts as a barrier, preventing the steel from coming into direct contact with the corrosive elements in the environment. Additionally, special steel may also contain other alloying elements such as molybdenum, nickel, or copper, which further enhance its resistance to corrosion. These elements help to increase the steel's ability to withstand pitting, crevice corrosion, and stress corrosion cracking, which are common types of corrosion that occur in corrosive environments. Furthermore, special steel is often treated with various surface coatings or finishes that provide additional protection against corrosion. These coatings can include zinc, epoxy, or polymeric materials, which create an additional barrier between the steel and the corrosive elements. In summary, special steel performs exceptionally well in corrosive environments due to its high content of alloying elements, protective oxide layer, and additional surface coatings. It offers excellent resistance to various forms of corrosion and ensures the longevity and reliability of structures or equipment operating in such environments.
Q:How is high-strength stainless steel used in the production of structural components?
High-strength stainless steel is used in the production of structural components due to its exceptional mechanical properties. Its high tensile strength, corrosion resistance, and durability make it an ideal material for constructing load-bearing parts such as beams, columns, and supports. Additionally, the stainless steel's ability to withstand harsh environments ensures the longevity and reliability of these structural components.
Q:Can special steel be used for precision instruments?
Yes, special steel can be used for precision instruments. Special steel, such as tool steel or stainless steel, offers excellent hardness, strength, and corrosion resistance, making it ideal for precision instruments that require high accuracy and durability.
Q:How is special steel used in the defense manufacturing process?
Special steel is extensively used in the defense manufacturing process due to its superior strength, durability, and resistance to corrosion. It is utilized in the production of various military equipment, such as armored vehicles, tanks, aircraft carriers, submarines, and missile systems. Additionally, special steel is crucial for manufacturing firearms, ammunition, and protective gear for military personnel. Its exceptional properties ensure the reliability and effectiveness of defense equipment, making it an essential component in the defense manufacturing industry.
Q:What are the challenges faced in the manufacturing process of special steel?
There are several challenges faced in the manufacturing process of special steel. Firstly, the raw materials used in special steel production, such as alloying elements, need to be carefully selected and sourced to ensure high quality and desired properties. Secondly, the melting and casting process requires precise control of temperatures and cooling rates to prevent defects and achieve uniformity. Thirdly, achieving the desired composition and microstructure through heat treatment can be complex and time-consuming. Additionally, maintaining consistent quality throughout the entire production process can be a challenge, as any variation in parameters can result in variations in the final product. Finally, ensuring compliance with stringent industry standards and regulations adds another layer of complexity to the manufacturing process of special steel.
Q:How does special steel perform in high-temperature strength?
Special steel, also referred to as high-temperature steel, is engineered for superior performance in applications requiring high-temperature strength. Unlike standard steels, which can weaken and compromise structural integrity at elevated temperatures, special steel maintains its mechanical properties even in extreme heat conditions. The exceptional high-temperature strength of special steel stems from its distinctive composition. It is typically alloyed with elements like chromium, nickel, and molybdenum, significantly enhancing its resistance to thermal expansion, oxidation, and creep. These alloying elements form stable oxides on the steel's surface, creating a protective layer that prevents further oxidation and corrosion, thus preserving the material's strength and integrity. Furthermore, the microstructure of special steel is vital to its high-temperature performance. Through advanced manufacturing techniques, special steel is crafted with a fine-grained structure, enhancing its resistance to deformation and boosting its creep strength. The fine grains also contribute to its ability to retain mechanical properties at elevated temperatures for extended periods. Moreover, special steel undergoes rigorous heat treatment processes, such as quenching and tempering, which further enhance its high-temperature strength. These processes refine the microstructure and optimize the steel's mechanical properties, including hardness, toughness, and resistance to thermal fatigue. In conclusion, special steel is purposefully designed and engineered to excel in applications requiring high-temperature strength. Its unique composition, microstructure, and heat treatment processes contribute to its exceptional resistance to thermal expansion, oxidation, and creep, ensuring that it maintains its mechanical properties and structural integrity even under extreme heat conditions.
Q:What are the properties of cobalt-based alloys?
Cobalt-based alloys possess excellent strength, corrosion resistance, and high-temperature stability, making them suitable for various applications such as aerospace, medical implants, and industrial machinery. They also exhibit magnetic properties, good wear resistance, and the ability to withstand extreme environments, making them highly versatile and sought after in various industries.
Q:What are the common challenges in heat treating special steel?
Some common challenges in heat treating special steel include achieving the desired hardness and strength while minimizing distortion and cracking, ensuring uniform heat distribution throughout the steel, managing the transformation of phases during heating and cooling, controlling the formation of detrimental microstructures, and maintaining tight dimensional tolerances. Additionally, special steels may have specific alloying elements or compositions that require precise heat treatment processes to maximize their desired properties.
Q:How does special steel contribute to the wear resistance of products?
Special steel contributes to the wear resistance of products in several ways. Firstly, special steel is known for its high strength and hardness, which allows it to withstand heavy loads and resist deformation. This property is crucial in applications where products are subjected to abrasive forces or repetitive stress, such as in machinery parts or cutting tools. Additionally, special steel often contains specific alloying elements that enhance its wear resistance. For example, the addition of chromium can form a protective layer of chromium oxide on the surface of the steel, which acts as a barrier against corrosion and wear. Similarly, the addition of vanadium or molybdenum can increase the steel's hardness and toughness, making it more resistant to wear and fatigue. Moreover, special steel can be heat-treated to further enhance its wear resistance. Through processes like quenching and tempering, the steel's microstructure can be modified to achieve a fine-grained and homogeneous structure. This results in improved hardness and increased resistance to wear, as well as better dimensional stability. In summary, special steel contributes to the wear resistance of products due to its inherent strength and hardness, alloying elements that enhance wear resistance, and the ability to be heat-treated for improved properties. These characteristics make special steel an excellent choice for applications where durability and longevity are crucial.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords