• Continue Casting Steel Bloom Made by Blasting Furnace System 1
  • Continue Casting Steel Bloom Made by Blasting Furnace System 2
Continue Casting Steel Bloom Made by Blasting Furnace

Continue Casting Steel Bloom Made by Blasting Furnace

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

 Continue Casting Steel Bloom Made  by Blasting Furnace

 

1.Structure of   Continue Casting Steel Bloom Made  by Blasting Furnace

  Continue Casting Steel Bloom Made  by Blasting Furnace

Steel ingot by cogging or breakdown of semi-finished products, is the raw material of all kinds of steel mill.Billet section of square, round, flat, rectangular and abnormity, etcSeveral, mainly related to shape of rolled products.Simple rolled section steel, choose close to finished product cross section of square billet or rectangular billet.rollingThe sector products such as flat steel, Angle steel, select the rectangular billet or slab.Had better profiled billet when production beams, channels, and in rolling processLines and improve the yield.The raw material of round billet is the production of seamless tube.See billet production billet production methods. Billet section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions.General steelBillet section heightH.And the roll diameterDThe ratio of the(namelyH/D)Should be less than or equal to zero0.5.Length of steel billet by finishing temperature,Rolling time and the length of the productOr times ruler.When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production.For the productionChoose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.


2.Main Features of  Continue Casting Steel Bloom Made  by Blasting Furnace.

Continue Casting Steel Bloom Manufactured  by Blasting Furnace section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Billet section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel billet by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.

 

3.   Continue Casting Steel Bloom Made  by Blasting FurnaceImages

 

 

Continue Casting Steel Bloom Made by Blasting Furnace

Continue Casting Steel Bloom Made by Blasting Furnace

 

 

 

 

4.   Continue Casting Steel Bloom Made  by Blasting Furnace Specification

 1)SIZE

2)MATERIAL GRADE

3)CHEMICAL ELEMENTS COMPOSITONS


Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: billet: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm Surface tilt: no more than billet section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P

 

5.FAQ of   Continue Casting Steel Bloom Made  by Blasting Furnace

 

We have organized several common questions for our clientsmay help you sincerely 

 

①How to regonized your products when the shipment arrive?

We will marked the painting in the end of the steel billet, and send you the MTC with the heart no. same as marked in the steel billets.

 

②How many days for the SGS inpecting the quantity and weight?

It depens on the quantity usually it is about 4000tons one day..

 

③What kinds of the grade you can supply?

We can supply Q195, Q215,Q235 and other kinds of the grade as our customers need.


 

Q:How do steel billets compare to other types of metal billets?
Steel billets generally have several advantages over other types of metal billets. Firstly, steel is known for its strength and durability, making steel billets a reliable choice for various applications. Steel billets also have excellent heat and corrosion resistance, enhancing their longevity and performance. Additionally, steel billets offer a wide range of alloying possibilities, allowing for customization and the creation of specific properties for different applications. Overall, the superior strength, durability, and versatility of steel billets make them a preferred choice in many industries compared to other types of metal billets.
Q:What is the role of steel billets in the manufacturing of automotive body panels?
Steel billets play a crucial role in the manufacturing of automotive body panels as they are the starting material for the production process. These billets are heated, shaped, and formed into various body panel components, such as doors, hoods, and fenders. Their high strength and durability make them ideal for providing structural integrity and protection in automotive applications. Additionally, the malleability of steel billets allows for intricate designs and shaping, ensuring precise and smooth body panel surfaces.
Q:How are steel billets used in the production of mining components?
Steel billets are used in the production of mining components as they serve as the raw material for shaping and forming various mining equipment such as rods, bars, plates, and shafts. These billets are melted and then cast into specific shapes and sizes, which are then machined, welded, or forged to create durable and robust components that can withstand the harsh conditions of mining operations.
Q:What are the main factors affecting the wear resistance of steel billets?
The main factors affecting the wear resistance of steel billets can be categorized into several key aspects. First and foremost, the composition of the steel plays a crucial role. The presence of certain alloying elements, such as chromium, manganese, and molybdenum, significantly enhances the wear resistance of the steel. These elements form carbides and other compounds that create a hard and durable surface, capable of withstanding abrasive forces. Additionally, the microstructure of the steel is vital in determining its wear resistance. Fine-grained steels tend to have better wear resistance as the smaller grain size provides a more uniform and dense structure, reducing the likelihood of cracks and wear. Heat treatment processes, such as quenching and tempering, can be employed to further refine the microstructure and enhance the wear resistance. Surface finish is another vital factor influencing wear resistance. A smooth and well-polished surface reduces the friction between the steel billet and its surroundings, minimizing wear. Various machining techniques, such as grinding and polishing, can be employed to achieve the desired surface finish. Moreover, the hardness of the steel billet is a significant determinant of wear resistance. Hardness is typically measured using the Rockwell or Brinell scales, and higher hardness values generally indicate improved wear resistance. Heat treatment, alloying, and the addition of hardening agents can all contribute to increasing the hardness of the steel billet. Lastly, environmental factors also impact wear resistance. The presence of corrosive substances, high temperatures, or abrasive particles in the working environment can accelerate wear and reduce the lifespan of the steel billet. Employing appropriate coatings, such as chromium plating or thermal spraying, can mitigate these environmental effects and enhance wear resistance.
Q:How are steel billets used in the manufacturing of marine equipment?
Steel billets are an essential component in the manufacturing of marine equipment due to their unique properties and versatility. These billets, which are semi-finished steel products in a rectangular or square cross-section, play a crucial role in the production of various marine equipment such as ship hulls, propellers, offshore platforms, and marine engines. Firstly, steel billets are used in the construction of ship hulls. The high strength and durability of steel make it an ideal material for withstanding the harsh marine environment, including corrosion, extreme temperatures, and pressure. These billets are forged and shaped into plates, sections, and profiles, which are then welded together to form the hull structure. The use of steel billets ensures that the ship is robust, capable of carrying heavy loads, and resistant to the corrosive effects of seawater. Furthermore, steel billets are utilized in the manufacturing of propellers, one of the most critical components of marine equipment. Propellers are responsible for generating thrust and enabling the movement of ships and boats through the water. Steel billets are forged and machined to create the propeller blades, ensuring they possess the required strength, hardness, and hydrodynamic properties necessary for efficient propulsion. In addition, steel billets are crucial in the construction of offshore platforms used in oil and gas exploration and production. These platforms, which can be fixed or floating, require a robust and stable structure to withstand the harsh marine conditions. Steel billets are used to fabricate the columns, braces, and beams that provide the necessary strength and stability to these platforms. The high load-bearing capacity and corrosion resistance of steel make it an ideal choice for such applications. Lastly, steel billets are employed in the manufacturing of marine engines, which power various vessels. These billets are forged and machined to create the engine components such as crankshafts, connecting rods, and cylinder blocks. Steel's excellent mechanical properties, including high tensile strength, toughness, and wear resistance, ensure that the marine engines can operate reliably and efficiently under demanding conditions. In conclusion, steel billets are indispensable in the manufacturing of marine equipment. They provide the strength, durability, and corrosion resistance required to withstand the harsh marine environment. Whether it is ship hulls, propellers, offshore platforms, or marine engines, steel billets play a vital role in ensuring the safety, performance, and longevity of marine equipment.
Q:How are steel billets different from steel bars?
Steel billets and steel bars are both common forms of steel products used in various industries. However, there are some key differences between them. 1. Shape and Size: Steel billets are generally square or rectangular in shape and have larger cross-sectional areas compared to steel bars. They are typically produced in sizes ranging from 100x100mm to 150x150mm or larger. On the other hand, steel bars are available in various shapes such as round, square, flat, or hexagonal, and come in smaller sizes depending on their intended application. 2. Manufacturing Process: Steel billets are produced through a primary steelmaking process called continuous casting or ingot casting. In this process, molten steel is solidified into a semi-finished product, which is then further processed into steel bars or other forms. Steel bars, on the other hand, are produced through a secondary steelmaking process called hot rolling or cold drawing. This involves passing the steel billet through a series of rolling mills or drawing machines to achieve the desired shape and size. 3. Usage: Steel billets are primarily used as raw materials for the production of various steel products, including bars, rods, wire, pipes, and structural steel sections. They serve as a starting point for further processing and shaping. Steel bars, on the other hand, are the finished product that is used in construction, manufacturing, and other industries. They are commonly utilized in the production of reinforced concrete structures, automotive components, machinery parts, and tools. 4. Composition and Properties: Both steel billets and bars are made from carbon steel or alloy steel, but the specific composition and properties may vary depending on the desired end use. Steel billets are often made from low-carbon or mild steel, which provides good formability and weldability. Steel bars, on the other hand, can be made from a wide range of steel grades, including low carbon, medium carbon, and high carbon steels, as well as alloy steels. The choice of steel grade depends on the desired mechanical properties, such as strength, hardness, and ductility. In summary, steel billets are the semi-finished products used as raw materials for manufacturing steel bars and other steel products. They differ from steel bars in terms of shape, size, manufacturing process, usage, and composition.
Q:What are the properties of alloy steel billets?
Alloy steel billets possess several properties that make them highly desirable in various industries. First and foremost, alloy steel billets exhibit exceptional strength and toughness due to the presence of alloying elements such as chromium, nickel, molybdenum, and vanadium. This enhanced strength allows the billets to withstand heavy loads and high temperatures, making them suitable for applications that require resistance to wear and tear. Additionally, alloy steel billets offer excellent corrosion resistance, making them ideal for use in harsh environments or exposure to chemicals. Their resistance to corrosion helps to prolong the lifespan of the billets and ensures their durability over time. Furthermore, alloy steel billets have good machinability, which means they can be easily shaped, formed, and fabricated into different products or components. This property allows for the creation of complex and intricate designs, making them versatile for use in various industries such as automotive, construction, and manufacturing. Another important property of alloy steel billets is their ability to be heat-treated. This process allows for the modification of their mechanical properties, such as hardness and ductility, to meet specific requirements. Heat treatment can enhance the strength and toughness of the billets, making them even more suitable for heavy-duty applications. Lastly, alloy steel billets possess good weldability, enabling them to be easily joined together through various welding techniques. This property enhances their versatility and allows for the construction of larger structures or the fabrication of complex assemblies. Overall, the properties of alloy steel billets, including strength, corrosion resistance, machinability, heat treatability, and weldability, make them highly valuable in a wide range of industries where high performance and durability are required.
Q:What are the different packaging options available for steel billets?
Steel billets can be packaged in various ways to meet the specific needs and preferences of customers. Here are some commonly used packaging options: 1. Wooden Crates: To ensure safe transportation and storage, steel billets can be secured in sturdy wooden crates. These crates offer protection against moisture and physical damage. 2. Steel Frames: Another option is to package the steel billets using steel frames. These frames, made of strong and durable steel bars, securely hold the billets in place, providing stability and protection. 3. Plastic Wrapping: Plastic wrapping is also a viable packaging method. It involves tightly wrapping the billets with plastic film to shield them from dust, moisture, and scratches. 4. Wire Binding: Steel billets can be bundled together using steel wires, a common packaging choice. This method ensures stability and prevents movement during transportation. 5. Customized Packaging: Some customers may require customized packaging for their steel billets. This can involve using specific materials like foam or cardboard for added protection, or incorporating branding elements on the packaging. Ultimately, the choice of packaging depends on factors such as billet size and weight, mode of transportation, and specific customer requirements. It is crucial to consider factors such as protection, stability, ease of handling, and cost-effectiveness when selecting the most suitable packaging option for steel billets.
Q:Can steel billets be cold rolled?
No, steel billets cannot be cold rolled. Cold rolling is a process that involves passing metal through rollers at room temperature to achieve a desired thickness and surface finish. Steel billets, on the other hand, are semi-finished metal products that are hot rolled into specific shapes.
Q:How are steel billets used in the manufacturing of fasteners and fittings?
Steel billets are used in the manufacturing of fasteners and fittings as they serve as the raw material from which these components are produced. These billets are heated and then shaped using various processes such as forging, extrusion, or machining to create the desired shape and size of the fasteners and fittings. The steel billets provide the necessary strength and durability required for these components to withstand the forces and loads they will encounter in their applications.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords