• Prime Steel Billet Q275, 20MnSi, 5SP,for very good price System 1
  • Prime Steel Billet Q275, 20MnSi, 5SP,for very good price System 2
  • Prime Steel Billet Q275, 20MnSi, 5SP,for very good price System 3
Prime Steel Billet Q275, 20MnSi, 5SP,for very good price

Prime Steel Billet Q275, 20MnSi, 5SP,for very good price

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
20000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

STEEL BILLET

1.Brief description

Steel billet(ingot) by cogging or breakdown of semi-finished products, is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity of several kinds of, mainly related to the shape of rolled products. 

2.Features

Rectangular billet continuous casting billet and mainly general carbon steel, low carbon low silicon cold-rolled material, high quality carbon structural steel, high strength low alloy steel, special steel, etc. 

The billet is mainly divided into two kinds from the shape

Slab: cross section width and height of the ratio of the larger, mainly used for rolling plate. 

Billet: equal cross section width and height, or a huge difference, mainly used for rolling steel, wire rod. , 

Steel billets have distinct characteristics as compared with already furnished steel bars and products. Billets have a specific grain structure, which enables the metal to be processed more intricately. Steel billets are also known for their malleability and ductility, especially when exposed to varying temperatures during shaping and molding.

3.Processing

Steel billets are considered fresh and raw, and they must undergo a series of manufacturing processes before they can be used for various purposes. Billets are made by means of freezing molten liquid, and are later exposed to extremely low temperatures in order to allow the metal to take shape and solidify in chemical structure. The temperature manipulates the metal's physical properties, and tones its strength and durability. The subsequent processes provide the metal's curved mold design so that it can fit the allotted space provided by other machines, which complete the finishing procedures.

4.Pictures

 

Prime Steel Billet Q275, 20MnSi, 5SP,for very good price

Prime Steel Billet Q275, 20MnSi, 5SP,for very good price


5.Usage

Billets, or ingots (as they sometimes referred to), are not of practical use until they have been formed into more functional shapes and sizes. While they have already been put in the furnace, they still require a series of shaping and molding procedures such as hot and cold working, milling and cutting before they are sold in hardware stores, or used for different applications. The unformed billets, however, can be used in striking currency such as coins and as reserves, similar to gold bars.

6.Detailed specification

Hot rolled billet steel 

Size: 50x50mm-180x180mm

Steel Grade: 3SP, 5SP,Q195,Q235,Q255,Q275 Length:3m-12m

MOQ: 1000MT/size

Payment term: TT or LC

Packing: in bulk , bundle

Shipment: by container , bulk vessel

Packaging Details: bundles with steel strips or as customers's requirements

Delivery time: 15-30 days after the deposit

Loading port:Tianjin, or other port China 

Origin : China 

Inspection:Third party inspection before loading.

 

 


Q:What are the safety precautions to be taken while handling steel billets?
When handling steel billets, there are several safety precautions that should be followed to ensure the well-being of individuals as well as the integrity of the material. Some key safety precautions include: 1. Personal Protective Equipment (PPE): It is essential to wear appropriate PPE such as gloves, safety glasses, and steel-toed boots to protect against potential injuries. Steel billets are heavy and can cause severe harm if dropped or mishandled. 2. Proper Lifting Techniques: When lifting steel billets, it is crucial to use proper lifting techniques, such as bending at the knees and keeping the back straight. This helps prevent strains, sprains, and other musculoskeletal injuries. 3. Adequate Training: Workers should receive proper training on how to handle steel billets safely. This includes understanding the weight and dimensions of the billets, knowing how to move them safely, and being aware of potential hazards. 4. Secure Storage and Transportation: Steel billets should be stored and transported in a secure manner to prevent accidents. They should be properly stacked, secured, and not overloaded to avoid falling or shifting during handling. 5. Clear Communication: In a work environment where multiple individuals are involved in handling steel billets, clear communication is essential. This includes using appropriate signals and verbal communication to coordinate movements and ensure everyone's safety. 6. Inspect Equipment: Before handling steel billets, it is important to inspect the equipment being used, such as cranes, forklifts, or other lifting devices. This helps identify any potential issues or malfunctions that could compromise safety. 7. Regular Maintenance: Regular maintenance of equipment used for handling steel billets is crucial to ensure their proper functioning. This includes inspections, repairs, and replacements as needed. 8. Hazard Identification: Workers should be trained to identify potential hazards associated with handling steel billets, such as sharp edges, hot surfaces, or slippery floors. Identifying and addressing these hazards promptly can prevent accidents and injuries. 9. Ergonomic Considerations: Ergonomic factors should be considered when designing workstations and handling procedures. This includes ensuring proper height and reach distances, providing adequate space for movement, and using tools or equipment that reduce strain on the body. 10. Emergency Response: Lastly, workers should be aware of emergency response procedures in case of accidents or injuries. This includes knowing the location of first aid kits, fire extinguishers, emergency exits, and how to report incidents to supervisors. By following these safety precautions, individuals can mitigate the risks associated with handling steel billets and create a safer work environment.
Q:I want to buy a fishing pole, I don't know how to distinguish it. Know what, please reply, thank you, [em10]!
Carbon fishing rod is divided into: carbon, pure carbon, high carbon.Carbon packaging, as the name suggests, two layers of material, the outside is a layer of carbon cloth, the inside layer is glass fiber, epoxy cloth. This kind of pole price is lower, this kind of pole does not recommend the brand, because the price is low, does not need to buy the brand. With a few times you can change, for beginners.Pure carbon refers to the overall use of 30T carbon cloth below the production of fishing rod, general 24T, 30T based, carbon content of more than 98%. The price is moderate, the fishing rod is recommended in the field of Koi, Koi a large proportion of domestic brands is unmatched, good quality.High carbon refers to the overall use of 30T carbon cloth above the fishing rod, but not the whole fishing rod is made of a carbon cloth.
Q:What are the potential applications of steel billets in the medical sector?
The medical sector has a wide range of potential applications for steel billets. One key use is in the manufacturing of medical instruments and surgical tools. Steel's high strength and durability make it an ideal material for producing precise and reliable instruments. Scalpels, forceps, bone saws, and orthopedic implants are just a few examples of the various medical tools that can be made from steel billets and are essential for surgeries and procedures. Moreover, steel billets can be utilized in the production of medical equipment like hospital beds, wheelchairs, and stretchers. These products require a strong and robust material to ensure patient safety and comfort. Steel provides the necessary strength to support the weight of patients and withstand regular usage, making it an excellent choice for these applications. Additionally, steel billets can be used in the construction of medical facilities and infrastructure. Steel is renowned for its structural integrity, making it suitable for building hospitals, clinics, and research laboratories. Steel structures offer resistance against earthquakes, fires, and other natural disasters, ensuring the safety of both medical personnel and patients. Furthermore, steel billets can be employed in the manufacturing of medical storage systems and cabinets. These storage solutions are crucial for maintaining a sterile and organized environment, preventing cross-contamination, and ensuring the proper storage of medical supplies and equipment. To sum up, steel billets have extensive potential in the medical sector. Steel's strength, durability, and reliability make it an invaluable material for enhancing patient care and safety, whether it's through the production of surgical instruments, medical equipment, construction of medical facilities, or manufacturing of medical storage solutions.
Q:How do steel billets contribute to the strength of a structure?
Steel billets contribute to the strength of a structure in several ways. Firstly, steel billets are produced by a process called casting, which involves pouring molten steel into molds and allowing it to solidify. This method ensures that the steel billets have a consistent and uniform composition, with minimal impurities. As a result, the structural integrity and strength of the final product are enhanced. Secondly, steel billets undergo a process called hot rolling or cold rolling, which further improves their strength. Hot rolling involves heating the steel billets to high temperatures and then passing them through a series of rollers, which compress and shape the steel into the desired form. This process helps align the steel's grain structure, making it stronger and more resistant to deformation. Additionally, steel billets are often used as raw material for the production of other steel products, such as beams, columns, and plates. These fabricated steel components are then incorporated into structures, providing additional strength and support. The high strength and durability of steel billets make them ideal for withstanding heavy loads, seismic forces, and other external pressures. Moreover, steel billets can be alloyed with other elements, such as carbon, manganese, and chromium, to enhance their mechanical properties and increase their strength. The addition of these alloying elements improves the steel's hardness, toughness, and resistance to corrosion, making it even more suitable for structural applications. Overall, steel billets play a crucial role in enhancing the strength of a structure. Through their uniform composition, hot or cold rolling processes, and alloying capabilities, steel billets contribute to the overall structural integrity, durability, and load-bearing capacity of buildings, bridges, and other infrastructure projects.
Q:How are steel billets inspected for internal and surface defects?
To ensure the quality and integrity of steel billets, various methods are employed to inspect them for internal and surface defects. One commonly used technique for detecting internal flaws is ultrasonic testing. This involves transmitting high-frequency sound waves through the billet and analyzing the reflections received to identify any discontinuities or defects such as cracks, voids, or inclusions. Another method used to inspect internal defects is magnetic particle inspection. This process entails applying a magnetic field to the billet and coating it with iron particles. If there are any internal defects or cracks, they will disrupt the magnetic field, causing the iron particles to accumulate at these locations and become visible under appropriate lighting conditions. When it comes to surface defects, visual inspection is typically the initial step. Expert inspectors visually examine the billet for any visible irregularities like cracks, pits, scratches, or deformities. They may also utilize specialized tools like magnifying glasses or microscopes to ensure a thorough examination. In addition to visual inspection, non-destructive testing techniques can also be employed to detect surface defects. One commonly used method is dye penetrant testing. In this procedure, a colored liquid dye is applied to the surface of the billet. The dye seeps into any surface defects and is later removed, leaving behind a visible indication of the defect. This technique is particularly effective in detecting surface cracks or discontinuities. Another technique used for surface defect inspection is eddy current testing. This technique is based on the principle that a fluctuating magnetic field induces electrical currents in conductive materials like steel. Any surface defects or irregularities will disrupt the induced currents, which can be detected by monitoring changes in the electrical properties of the billet. Eddy current testing is commonly employed to identify surface cracks, pits, or variations in thickness. In conclusion, a combination of these inspection methods allows for a comprehensive evaluation of steel billets, ensuring that both internal and surface defects are identified and addressed before the billets undergo further processing or are used in various applications.
Q:What are the potential applications of steel billets in the electronics industry?
The electronics industry can benefit from the potential applications of steel billets. While steel is not traditionally associated with this sector, advancements in technology have allowed for its use in various ways. One potential application is using steel billets to produce electronic enclosures. These enclosures offer superior durability and protection for electronic components. They can withstand harsh environments, provide electromagnetic shielding, and prevent damage from impacts or accidents. Manufacturers have the flexibility to shape and form steel billets into different enclosure designs to meet specific requirements. Another application is in manufacturing connectors and terminals. Steel billets can be machined and formed into intricate shapes and sizes, making them suitable for creating reliable and strong connectors. Steel connectors offer excellent conductivity, ensuring efficient and secure connections between electronic components. Additionally, steel's resistance to corrosion makes it a viable option for connectors exposed to moisture or other harsh conditions. Steel billets can also be used to produce high-strength structural components in electronic devices. These components, such as brackets, frames, or supports, require materials with exceptional strength and rigidity. Steel billets, with their high strength-to-weight ratio, provide the necessary structural integrity and stability. Their robustness ensures the longevity and reliability of electronic devices, especially those subjected to heavy loads or vibrations. Furthermore, steel billets can find applications in manufacturing heat sinks. Heat sinks are crucial for dissipating heat generated by electronic components and preventing overheating. Steel, with its excellent thermal conductivity, efficiently transfers heat away from sensitive electronic parts. By shaping steel billets into heat sink designs, manufacturers can create effective cooling systems that enhance the performance and longevity of electronic devices. In conclusion, steel billets have numerous potential applications in the electronics industry. From electronic enclosures to connectors, structural components, and heat sinks, steel's durability, conductivity, and thermal properties make it a valuable material for electronic device production. As technology continues to advance, the use of steel billets in the electronics industry is expected to expand further, offering more innovative solutions for electronic manufacturers.
Q:How are steel billets used in the manufacturing of structural components?
The manufacturing of structural components heavily relies on steel billets, which are an essential raw material. These billets, usually square or round in shape, are produced through continuous casting, a process that solidifies molten steel into a semi-finished product. After the formation of steel billets, they undergo further processing using different techniques like hot rolling, forging, or extrusion. Hot rolling includes heating the billets and passing them through a sequence of rollers to shape them into desired profiles, such as beams, channels, or angles. This method is crucial for achieving the necessary dimensions, strength, and surface finish. Forging is another technique employed with steel billets, involving heating the billets and shaping them using compressive forces. It is primarily used for manufacturing components that require enhanced strength and durability, like crankshafts, connecting rods, or turbine blades. Extrusion, on the other hand, is a specialized process that utilizes heated billets to create complex shapes by forcing them through a die. This technique is commonly utilized in the production of tubular components, such as pipes, tubes, or hollow sections. These components are extensively used in the construction of structures like bridges, buildings, or infrastructure. Steel billets play a critical role in the manufacturing of structural components by providing the necessary raw material that can be shaped using various fabrication techniques. Their adaptability and versatility make them an indispensable component in the construction industry, ensuring that buildings and structures possess the required strength and durability to withstand different loads and environmental conditions.
Q:How do steel billets contribute to the manufacturing of packaging materials?
Steel billets are used in the manufacturing of packaging materials as they provide the necessary strength and durability required to create sturdy and long-lasting packaging products. The steel billets are melted and formed into various shapes and sizes, which are then used to create packaging containers, cans, and other materials. These packaging materials are essential for safely storing and transporting goods, protecting them from external elements and ensuring their integrity throughout the supply chain.
Q:How are steel billets formed into other shapes?
Steel billets undergo a transformative process known as hot rolling or cold rolling to assume alternate shapes. During hot rolling, the steel billet is subjected to high temperatures and pressure as it passes through a succession of rollers to acquire the desired form. This technique is typically employed for larger and more intricate shapes like beams, channels, and angles. Conversely, cold rolling takes place at room temperature and involves guiding the steel billet through a series of rollers to gradually reduce its thickness and shape it into sheets, strips, or coils. Cold rolling is commonly utilized to fabricate thinner and more precise shapes such as plates, foils, and bars. In addition to rolling, steel billets can be transformed into diverse shapes through other processes such as forging, extrusion, and casting. Forging entails the application of pressure to the heated billet using a die or hammer, effectively shaping it into the desired form. Extrusion involves the passage of the heated billet through a die to create elongated and continuous shapes like pipes or tubes. Casting calls for the pouring of molten steel into a mold, allowing it to solidify into the desired shape. Collectively, the conversion of steel billets into alternative shapes necessitates a range of manufacturing processes including hot rolling, cold rolling, forging, extrusion, or casting, contingent upon the desired shape and properties of the final product. These processes guarantee the versatility of steel billets, enabling their transformation into a vast array of shapes suitable for various applications in construction, automotive, aerospace, and manufacturing industries.
Q:What are the main disadvantages of using steel billets?
One of the main disadvantages of using steel billets is their high cost. Steel billets require significant energy and resources to produce, which can lead to higher manufacturing expenses. Additionally, steel billets are heavy and difficult to transport, resulting in higher shipping costs. Another disadvantage is the limited availability of certain steel grades, leading to potential supply chain challenges. Finally, steel billets are prone to corrosion if not properly protected, requiring additional maintenance and protection measures.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords