• Prime Steel Billet Q275, 20MnSi, 5SP,Q235 for sale System 1
  • Prime Steel Billet Q275, 20MnSi, 5SP,Q235 for sale System 2
  • Prime Steel Billet Q275, 20MnSi, 5SP,Q235 for sale System 3
Prime Steel Billet Q275, 20MnSi, 5SP,Q235 for sale

Prime Steel Billet Q275, 20MnSi, 5SP,Q235 for sale

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
20000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

STEEL BILLET

1.Brief description

Steel billet(ingot) by cogging or breakdown of semi-finished products, is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity of several kinds of, mainly related to the shape of rolled products. 

2.Features

Rectangular billet continuous casting billet and mainly general carbon steel, low carbon low silicon cold-rolled material, high quality carbon structural steel, high strength low alloy steel, special steel, etc. 

The billet is mainly divided into two kinds from the shape

Slab: cross section width and height of the ratio of the larger, mainly used for rolling plate. 

Billet: equal cross section width and height, or a huge difference, mainly used for rolling steel, wire rod. , 

Steel billets have distinct characteristics as compared with already furnished steel bars and products. Billets have a specific grain structure, which enables the metal to be processed more intricately. Steel billets are also known for their malleability and ductility, especially when exposed to varying temperatures during shaping and molding.

3.Processing

Steel billets are considered fresh and raw, and they must undergo a series of manufacturing processes before they can be used for various purposes. Billets are made by means of freezing molten liquid, and are later exposed to extremely low temperatures in order to allow the metal to take shape and solidify in chemical structure. The temperature manipulates the metal's physical properties, and tones its strength and durability. The subsequent processes provide the metal's curved mold design so that it can fit the allotted space provided by other machines, which complete the finishing procedures.

4.Pictures

 

Prime Steel Billet Q275, 20MnSi, 5SP,Q235 for sale

Prime Steel Billet Q275, 20MnSi, 5SP,Q235 for sale


5.Usage

Billets, or ingots (as they sometimes referred to), are not of practical use until they have been formed into more functional shapes and sizes. While they have already been put in the furnace, they still require a series of shaping and molding procedures such as hot and cold working, milling and cutting before they are sold in hardware stores, or used for different applications. The unformed billets, however, can be used in striking currency such as coins and as reserves, similar to gold bars.

6.Detailed specification

Hot rolled billet steel 

Size: 50x50mm-180x180mm

Steel Grade: 3SP, 5SP,Q195,Q235,Q255,Q275 Length:3m-12m

MOQ: 1000MT/size

Payment term: TT or LC

Packing: in bulk , bundle

Shipment: by container , bulk vessel

Packaging Details: bundles with steel strips or as customers's requirements

Delivery time: 15-30 days after the deposit

Loading port:Tianjin, or other port China 

Origin : China 

Inspection:Third party inspection before loading.

 

 


Q:What are the different types of steel billet reheating furnaces?
There are several different types of steel billet reheating furnaces used in the metal industry. These furnaces are designed to heat steel billets to a specific temperature before they are further processed or shaped into various end products. The main types of steel billet reheating furnaces include: 1. Pusher Type Furnace: This type of furnace uses a pusher mechanism to move the billets through the furnace. The billets are loaded onto a roller conveyor and pushed into the furnace using mechanical pusher plates. As the billets move through the furnace, they are heated by the combustion gases or electrical heating elements. 2. Walking Beam Furnace: In a walking beam furnace, the billets are placed on a series of moving beams or skids. These beams move in a continuous loop, carrying the billets through the furnace. As the billets move, they are heated by the burners or electrical heating elements located above and below the beams. 3. Rotary Hearth Furnace: This type of furnace consists of a rotating hearth on which the billets are placed. The hearth rotates, bringing the billets through different temperature zones within the furnace. The billets are heated by the burners or electrical heating elements located above the hearth. 4. Continuous Furnace: A continuous furnace is a type of furnace where the billets are continuously fed into one end and discharged from the other end. The billets move through the furnace on a conveyor belt or roller conveyor, being heated by the combustion gases or electrical heating elements as they pass through. 5. Walking Hearth Furnace: In a walking hearth furnace, the billets are placed on a hearth that moves in a reciprocating motion. The hearth moves back and forth, bringing the billets through the furnace. The billets are heated by the burners or electrical heating elements located above and below the hearth. Each type of steel billet reheating furnace has its own advantages and is suitable for specific applications. The choice of furnace depends on factors such as the required heating capacity, the size and shape of the billets, the desired temperature profile, and the energy efficiency requirements.
Q:What are the factors affecting the price of steel billets?
The price of steel billets can be affected by various factors. Firstly, the balance between supply and demand plays a significant role. If the demand for steel billets is high and the supply is limited, the price will rise. On the other hand, if the supply exceeds the demand, the price will decrease. Additionally, the cost of raw materials used in the production of steel billets, such as iron ore and coal, can greatly impact the price. Fluctuations in the prices of these raw materials can lead to changes in production costs, which in turn affect the price of steel billets. Furthermore, energy prices have a direct impact on the price of steel billets as their production requires a significant amount of energy. If energy prices increase, the cost of production for steel billets will also rise, resulting in a higher price. Transportation costs also play a role in determining the final price of steel billets. Factors like fuel prices, distance, and transportation infrastructure can impact the costs involved in transporting steel billets from the manufacturing plant to the market, thereby influencing the price. Government regulations and trade policies, such as import/export duties, tariffs, and quotas, can significantly affect the price of steel billets. These policies can restrict or facilitate the movement of steel billets between countries, impacting the supply and demand dynamics and, subsequently, the price. Moreover, fluctuations in currency exchange rates can influence the price of steel billets, as they are traded globally. If the currency in which steel billets are traded weakens against other currencies, the price may increase to compensate for the decreased value of the currency. Lastly, market speculation and investor sentiment can also influence the price of steel billets. Economic indicators, geopolitical events, and investor expectations can drive buying or selling behavior, leading to price fluctuations. It is important to recognize that these factors are interconnected and can interact with each other, resulting in a complex and dynamic market for steel billets.
Q:How are steel billets used in the production of structural steel?
Steel billets are used as a starting material in the production of structural steel. They are heated and then passed through rolling mills to be shaped into various forms such as beams, columns, and bars. These billets serve as the raw material that undergoes further processes like cutting, bending, and welding to create the final structural steel components used in construction and other applications.
Q:What are the different types of surface finish methods used for steel billets?
Steel billets can be subjected to various surface finish methods, each serving unique purposes and achieving distinct surface characteristics. These methods encompass: 1. Hot rolling: By passing the steel billet through heated rollers, the material is compressed and shaped, resulting in a smooth and glossy surface finish. 2. Shot blasting: This technique involves propelling small metallic or non-metallic particles at high speeds onto the steel billet's surface. It effectively eliminates scale, rust, or contaminants, leaving behind a clean and textured finish. 3. Pickling: Through immersion in an acid solution, the steel billet undergoes a chemical process that eliminates oxide scale and surface impurities. This method provides a smooth and corrosion-resistant surface finish. 4. Grinding: By employing abrasive wheels or belts, material is removed from the steel billet's surface. This process enables the attainment of a precise and smooth finish suitable for various applications. 5. Polishing: Utilizing abrasive materials, imperfections or roughness are eliminated from the steel billet's surface through mechanical polishing. This method yields a high-gloss, mirror-like finish. 6. Cold rolling: Similar to hot rolling, cold rolling entails passing the steel billet through rollers. However, the billet remains unheated during this process, resulting in a smoother and more precise surface finish. 7. Coating: This surface finish method involves applying a protective layer or coating onto the steel billet. It can encompass paints, varnishes, or specialized coatings aimed at enhancing the steel billet's appearance, durability, or corrosion resistance. Each of these surface finish methods possesses distinct advantages and is selected based on the desired application, aesthetics, and functional requirements of the steel billet.
Q:What are the specifications for tool steel billets used in the automotive industry?
Tool steel billets used in the automotive industry must meet specific criteria to ensure their suitability for various applications. These criteria are essential to guarantee the desired performance and durability of the tool steel in automotive manufacturing processes. One crucial criterion for tool steel billets used in the automotive industry is their chemical composition. The tool steel needs to have a precise composition of elements like carbon, chromium, vanadium, and molybdenum, among others. These elements contribute to the steel's hardness, wear resistance, and toughness, which are vital properties for automotive tooling. Furthermore, the tool steel billets must fall within a specific range of hardness. Hardness can be measured using scales such as Rockwell or Brinell, and the desired level of hardness depends on the intended application. Tools that require high wear resistance generally prefer higher hardness, while tools that require toughness and impact resistance may tolerate lower hardness. Additionally, the tool steel billets used in the automotive industry must display excellent dimensional stability. This means that the steel should undergo minimal dimensional changes during heat treatment and manufacturing processes, ensuring that the tools maintain their shape and accuracy over time. Another important criterion is the machinability of the tool steel. It should be easy to machine and shape into the desired tooling components without excessive tool wear or difficulty. Good machinability allows for efficient production and reduces costs associated with tooling. Moreover, the tool steel billets used in the automotive industry should exhibit good thermal conductivity. This property enables the effective dissipation of heat generated during manufacturing processes like forging or heat treatment. Good thermal conductivity helps prevent localized overheating and ensures uniform heat distribution throughout the tool, resulting in consistent performance. Lastly, the tool steel billets should be free from defects and impurities that could compromise the integrity and performance of the tool steel. These defects include cracks, voids, inclusions, or any other imperfections. Typically, quality control measures such as non-destructive testing are implemented to ensure that the billets meet the required standards. In conclusion, the specifications for tool steel billets used in the automotive industry encompass factors such as chemical composition, hardness, dimensional stability, machinability, thermal conductivity, and overall quality. These specifications guarantee that the tool steel meets the specific requirements of automotive tooling applications, providing durability, performance, and reliability in automotive manufacturing processes.
Q:What are the dimensions of a typical steel billet?
The dimensions of a typical steel billet vary depending on its application and the specific requirements of the industry. However, common dimensions for steel billets range from 100mm to 300mm in width and 100mm to 400mm in height, with lengths typically ranging from 3 to 6 meters.
Q:How are steel billets used in the production of mining machinery?
Steel billets are used in the production of mining machinery as they serve as the raw material for forging and shaping various components such as gears, shafts, frames, and structural elements. These billets are heated and then formed into desired shapes through processes like rolling, machining, and welding. The high strength and durability of steel make it ideal for withstanding the harsh conditions and heavy loads associated with mining operations, ensuring the reliability and performance of mining machinery.
Q:How are steel billets used in the production of wire rods?
Steel billets are a crucial raw material in the production of wire rods. These billets, which are cylindrical in shape, serve as the starting point for the wire rod manufacturing process. The process begins with the heating of steel billets in a furnace to achieve the desired temperature for hot rolling. Once heated, the billets are passed through a series of rolling mills, where they undergo a process called hot rolling. This process involves passing the billets through a set of rollers that gradually reduce their diameter, while increasing their length. As a result, the billets transform into long, thin, and continuous wire rods. During hot rolling, the steel billets undergo plastic deformation, meaning that their shape changes under the application of heat and pressure. This process helps to align the internal grain structure of the steel, resulting in improved mechanical properties such as strength, ductility, and toughness. After the hot rolling process, the wire rods are typically coiled and cooled. They may then undergo further treatments such as pickling, surface coating, or heat treatment to enhance their quality and suitability for specific applications. Finally, the wire rods are ready to be used in various industries, such as automotive, construction, and manufacturing, for the production of a wide range of products, including wires, cables, nails, screws, and reinforcement bars. In summary, steel billets are transformed into wire rods through the process of hot rolling. This process involves heating the billets, passing them through rolling mills to reduce their diameter and increase their length, and then further treating and cooling them. The resulting wire rods are used in a multitude of applications, making them an essential component in the production of various products.
Q:How are steel billets used in the manufacturing of tools?
Steel billets are used in the manufacturing of tools as the starting material. They are heated, shaped, and machined into various tool components, such as cutting blades, drill bits, or molds, to achieve the desired shape and strength.
Q:How are steel billets tested for strength?
To ensure the quality and appropriateness of steel billets for different uses, they undergo various strength tests. One commonly employed method is the tensile strength test, which involves applying a controlled pulling force to a sample of the billet until it breaks. The maximum force exerted during this test determines the billet's tensile strength. Another crucial test is the hardness test, which evaluates the billet's resistance to indentation. This procedure utilizes a hardness tester that applies a known force to the billet's surface and measures the resulting indentation's depth. The hardness value obtained from this test aids in determining the billet's strength and its ability to endure wear and tear. Additionally, steel billets may also undergo impact testing, in which a pendulum strikes the billet, measuring the energy absorbed during fracture. This test assesses the billet's toughness and its capacity to withstand sudden shocks or impacts. Moreover, ultrasonic testing is frequently conducted to identify any hidden flaws or inconsistencies within the billet. This non-destructive testing method employs high-frequency sound waves to detect internal defects like cracks, voids, or inclusions that may weaken the billet and jeopardize its strength. By combining these tests with other quality control measures, steel billets are thoroughly examined for strength and suitability in various industrial applications, including construction, automotive, and manufacturing.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords