• Q235/3SP 165MM Blast Furnace Hot Rolled Steel Billet System 1
  • Q235/3SP 165MM Blast Furnace Hot Rolled Steel Billet System 2
  • Q235/3SP 165MM Blast Furnace Hot Rolled Steel Billet System 3
  • Q235/3SP 165MM Blast Furnace Hot Rolled Steel Billet System 4
  • Q235/3SP 165MM Blast Furnace Hot Rolled Steel Billet System 5
  • Q235/3SP 165MM Blast Furnace Hot Rolled Steel Billet System 6
Q235/3SP 165MM Blast Furnace Hot Rolled Steel Billet

Q235/3SP 165MM Blast Furnace Hot Rolled Steel Billet

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
2000 m.t.
Supply Capability:
30000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description of Q235/3SP 165MM Blast Furnace Hot Rolled Steel Billet

Our hot dip galvanised steels consist of a steel substrate with a metallic zinc coating applied by means of a continuous hot dip galvanising process. Metallic zinc coatings are available in steel grades ranging from steel for bending and deep drawing applications, to structural steels and high yield strength steels.

A glossy surface finish obtained under specific skin-pass conditions (either non-skin-passed or skin- passed with smooth cylinders to obtain low roughness) can be provided if required at time of enquiry.


Advantage of Q235/3SP 165MM Blast Furnace Hot Rolled Steel Billet

Uncoated CR steel sheet With the features of in line with the international highest standards in demension and shape, excellent surface finish and properties, the products are mainly used in home appliance and automobile industries.

Galvanized steel sheet(include HDG and EG)

With the features of good corrosion resistance, the products are mainly used in automobile, home appliance, electronics, building and machinery manufacture industries, etc.

Precoated steel sheet With the features of enviromental protection and good processablility, long lasting surface durability, rich in colors, the products are maily used in building, home appliance and furniture industries, etc.

Q235/3SP 165MM Blast Furnace Hot Rolled Steel Billet

Applications of Q235/3SP 165MM Blast Furnace Hot Rolled Steel Billet

Our hot dip galvanised steels can be used in a very wide range of applications for industrial markets, both indoors and outdoors. Some of the most common applications are:

Building: wide sections for roofing and cladding, doors, door frames, metallic ceilings, partitions, structural members etc
Domestic appliances: all appliances for this sector (both white and brown goods) are manufactured with hot dip galvanised steels
Miscellaneous: electrical cabinets, aeraulic components, air conditioners, road signs etc 

Zinc hot dip galvanised steel is suitable for contact with foodstuffs under certain conditions, as specified in European directive 89/109/EEC and French standard NF A 36-712-1. Please contact us for further information on this subject.

Q235/3SP 165MM Blast Furnace Hot Rolled Steel Billet

Specifications of Q235/3SP 165MM Blast Furnace Hot Rolled Steel Billet

Quality

Q/BQB 440-2003

JIS G3312-1994

JIS G3321

EN 10326-2004

ASTM A653-02a

EN 10327-2004

(BASE PLATE)

(BASE PLATE)


Commercial Steel

DC51D

SGCC

SGLCC

DX51D+Z

DX51D+AZ

CS Type A/B/C

Forming Steel

St01,St02,St03

SGCD1

SGLCD1

FS Type A, Type B

Drawing

DC52D /DC53D

-

DX52D+Z

DX52D+AZ

DDS TYPE A/C

Steel

DX53D+Z

DX53D+AZ

Structural

S280GD (StE28)

SGC400

SGLC400

S280D+Z

DX54D+AZ

SS275

Steel

S350GD (StE34)

SGC440

SGLC440

S350D+Z

S350D+AZ

SS340 Class1


FAQ of Q235/3SP 165MM Blast Furnace Hot Rolled Steel Billet

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.



Q:Can steel billets be used for structural purposes?
Yes, steel billets can be used for structural purposes. Steel billets are semi-finished steel products that are typically hot-rolled or forged into various shapes, including beams, columns, and other structural components. These billets are commonly used in construction and engineering projects to provide strength, durability, and load-bearing capabilities to structures. Steel billets are often further processed and shaped to meet specific design requirements before being incorporated into the construction process. They are widely utilized in the construction of buildings, bridges, highways, and other infrastructure projects due to their high strength-to-weight ratio and excellent mechanical properties. Additionally, steel billets can be easily welded, making them suitable for various structural applications.
Q:What is the role of steel billets in the construction of underground tunnels?
Steel billets play a crucial role in the construction of underground tunnels. These cylindrical steel bars are used as the primary raw material for manufacturing various structural components, such as reinforcements and supports, that are essential in ensuring the stability and safety of the tunnel. One of the main applications of steel billets is in the creation of rebar, which is short for reinforcing bar. Rebars are embedded within the concrete walls and floors of the tunnel, providing tensile strength and preventing cracking or collapsing under the immense pressure exerted by the surrounding soil or water. These steel bars reinforce the concrete, making it more durable and resistant to deformation, thus enhancing the overall structural integrity of the tunnel. Additionally, steel billets are also used to produce other essential tunnel components, such as tunnel segments and steel arches. Tunnel segments are precast concrete elements that form the lining of the tunnel, and they often incorporate steel reinforcement to enhance their strength. Steel arches, on the other hand, are used in the construction of tunnel roofs to provide additional support and stability. Furthermore, steel billets are employed in the fabrication of various tunnel reinforcement systems, such as rock bolts and ground anchors. These systems help secure loose or unstable rock formations, preventing them from collapsing and endangering the tunnel's stability. Steel billets are also utilized in the manufacturing of tunnel supports, such as steel ribs and beams, which provide additional strength and rigidity to the tunnel structure. In summary, steel billets serve as a critical raw material for the construction of underground tunnels. Through their transformation into rebar, tunnel segments, steel arches, and reinforcement systems, they play a vital role in ensuring the structural integrity, stability, and safety of tunnels, thereby facilitating efficient and secure transportation networks underground.
Q:Can steel billets be used in the production of consumer electronics?
No, steel billets are not typically used in the production of consumer electronics. Steel billets are semi-finished steel products that are typically used as raw material in the manufacturing of other steel products, such as bars, rods, and pipes. Consumer electronics, on the other hand, are typically made using a variety of materials, including plastics, metals like aluminum and copper, and electronic components such as circuit boards and semiconductors. While steel may be used in some components of consumer electronics, such as the casing or frame, it is usually in a more processed form, such as sheet metal or extruded profiles, rather than steel billets.
Q:What are the different types of defects found in steel billets?
There are several types of defects that can be commonly found in steel billets. These defects can occur during the manufacturing process or due to external factors. Some of the different types of defects found in steel billets include: 1. Surface defects: These defects are visible on the surface of the billet and can include scale, scratches, cracks, or pits. Surface defects can be caused by improper handling, inadequate cleaning, or excessive heat during the manufacturing process. 2. Internal defects: These defects are not visible on the surface and can only be detected through non-destructive testing methods. Internal defects can include voids, inclusions, segregation, or non-uniform microstructures. These defects can affect the mechanical properties and overall quality of the steel billet. 3. Decarburization: This defect occurs when the surface layer of the billet loses its carbon content due to exposure to high temperatures or oxygen. Decarburization can weaken the billet and reduce its strength and hardness. 4. Shrinkage cavities: Shrinkage cavities are formed when the steel billet solidifies and contracts unevenly. These cavities can lead to reduced mechanical properties and structural integrity. 5. Surface cracks: Cracks can occur during the cooling and solidification process of the billet due to thermal stresses. These cracks can propagate into the interior of the billet, leading to further defects and potential failure. 6. Segregation: Segregation refers to the uneven distribution of elements or impurities within the steel billet. This can result in inconsistent mechanical properties, reduced strength, and poor machinability. 7. Inclusions: Inclusions are foreign particles or impurities that are trapped within the steel billet during the manufacturing process. These inclusions can affect the mechanical properties and can cause defects such as porosity or brittleness. It is essential to minimize and control these defects in steel billets to ensure high-quality finished products. Proper quality control measures, material handling, and manufacturing processes can help reduce the occurrence of these defects and improve the overall quality of steel billets.
Q:How are steel billets forged into shape?
The process of hot forging is utilized to shape steel billets. It entails heating the billet to a temperature that enables easy manipulation, typically ranging from 1100 to 1250 degrees Celsius. Once heated, the billet is positioned on a die, which is a specially designed tool with a cavity that imparts the desired shape onto the final product. Pressure is exerted on the billet by a large mechanical or hydraulic press, compelling it to fill the die cavity. This pressure induces the steel to flow and take the shape of the die, resulting in the intended form of the forged item. Depending on the product's size and complexity, the pressure applied during forging can reach several thousand tons. Throughout the forging process, the steel billet undergoes plastic deformation, causing its internal structure to rearrange and the metal grains to align. This grain alignment enhances the mechanical properties of the forged product, increasing its strength and durability. To achieve the final dimensions and features, additional operations such as trimming, piercing, or punching may be conducted after the initial shaping. These post-forging operations can be carried out while the steel is still hot or after it has cooled down. Once the desired shape is attained, the forged product is slowly cooled to alleviate any residual stresses and prevent cracking. This cooling process, known as annealing, enhances the metallurgical properties of the steel and improves its overall performance. To summarize, the hot forging process involves heating the steel billet, placing it on a die, applying high pressure to shape it, and subsequently cooling it to optimize its mechanical properties. This process enables the transformation of steel into various intricate shapes, making it a versatile and extensively used material across multiple industries.
Q:What are the different testing methods used for steel billets?
There are several testing methods used for steel billets to ensure their quality and suitability for various applications. These methods include: 1. Visual Inspection: This is the simplest and most common method used to assess the overall quality and surface condition of steel billets. Inspectors visually examine the billets for any visible defects such as cracks, surface irregularities, or foreign materials. 2. Dimensional Inspection: Steel billets must meet specific dimensional requirements. Dimensional inspection involves measuring the length, width, and height of the billets using calibrated tools to ensure they meet the specified tolerances. 3. Ultrasonic Testing: Ultrasonic testing is a non-destructive testing method that uses high-frequency sound waves to detect any internal defects in the billets. A transducer is used to send sound waves into the material, and any reflected waves are analyzed for indications of flaws or inconsistencies. 4. Magnetic Particle Inspection: This method is primarily used to detect surface and near-surface defects in steel billets. A magnetic field is applied to the billet, and a magnetic particle solution is then applied to the surface. Any defects or cracks will cause the particles to collect and create visible indications. 5. Eddy Current Testing: Eddy current testing involves passing an alternating current through a probe, which generates an electromagnetic field. When the probe is placed near the billet's surface, any changes in the electrical conductivity or magnetic permeability of the material will create eddy currents, indicating the presence of defects. 6. Chemical Analysis: Chemical analysis is performed to determine the composition of the steel billets, including the percentage of various elements such as carbon, manganese, silicon, and others. This analysis ensures that the billets meet the specified chemical composition required for their intended use. 7. Tensile Testing: Tensile testing measures the mechanical properties of steel billets, including their strength, ductility, and elasticity. A sample is taken from the billet and subjected to tension until it fractures. The force applied and the resulting elongation or deformation are measured to determine the billet's mechanical properties. By utilizing these testing methods, steel billets can be thoroughly assessed for any defects, dimensional discrepancies, and material properties, ensuring their compliance with industry standards and meeting the specific requirements for their intended applications.
Q:What is the typical size and shape of steel billets?
The typical size and shape of steel billets can vary depending on the specific application and industry requirements. However, they are commonly rectangular or square in shape, with dimensions ranging from a few inches to several feet in length, width, and height.
Q:What are the different forging methods used for steel billets?
There are several different forging methods used for steel billets, each with its own advantages and applications. 1. Open Die Forging: This method involves shaping the steel billet between flat dies, allowing for flexibility in design and size. Open die forging is commonly used for larger and more complex parts that require customization, such as shafts, cylinders, and discs. 2. Closed Die Forging: Also known as impression die forging, this method involves shaping the steel billet within a set of dies that contain the desired shape. Closed die forging is ideal for producing high-precision and complex parts with tight tolerances, such as gears, connecting rods, and crankshafts. 3. Upset Forging: Upset forging involves increasing the cross-sectional area of the steel billet by compressing it between dies. This method is commonly used to create short-length parts, such as bolts, screws, and fasteners. 4. Roll Forging: In roll forging, the steel billet is passed through a set of cylindrical rolls that gradually shape it into the desired form. This method is often used to produce long parts with a consistent cross-section, such as bars, rods, and shafts. 5. Press Forging: Press forging utilizes a hydraulic or mechanical press to shape the steel billet. This method offers greater control over the forging process, allowing for precise shaping of intricate parts. Press forging is often employed for manufacturing automotive components, aerospace parts, and tools. 6. Isothermal Forging: Isothermal forging involves heating the steel billet and the dies to the same temperature, reducing the cooling effect during forging. This method allows for greater control over the microstructure and mechanical properties of the final product, making it suitable for producing parts that require high strength and temperature resistance. Each forging method offers unique benefits, allowing steel billets to be shaped into a wide range of products with varying complexity, size, and mechanical properties. The choice of forging method depends on factors such as the desired product, material properties, production volume, and cost considerations.
Q:What are the common applications of stainless steel billets?
Due to their exceptional properties and versatility, stainless steel billets find widespread use in various industries. Some common applications of stainless steel billets include: 1. Construction: Extensively used in the construction industry for structural purposes, stainless steel billets manufacture beams, columns, and other load-bearing components due to their high strength and corrosion resistance. 2. Automotive Industry: The automotive industry utilizes stainless steel billets to manufacture components like exhaust systems, engine parts, and suspension components. The high temperature and corrosion resistance of stainless steel make it an ideal choice for these applications. 3. Aerospace Industry: In the aerospace industry, stainless steel billets manufacture critical components such as aircraft frames, landing gear, and engine parts. Stainless steel's high strength-to-weight ratio and resistance to extreme temperatures make it a preferred material in this sector. 4. Oil and Gas Industry: The oil and gas industry widely employs stainless steel billets due to their excellent corrosion resistance. They manufacture pipes, fittings, valves, and other equipment that come in contact with corrosive fluids or gases. 5. Food Processing Industry: The hygienic properties and resistance to corrosion caused by food and cleaning agents make stainless steel billets extensively used in the food processing industry. Equipment like storage tanks, conveyors, and processing machinery are manufactured using stainless steel billets. 6. Medical and Pharmaceutical Industry: The medical and pharmaceutical industry utilizes stainless steel billets for manufacturing surgical instruments, implants, and equipment. Stainless steel's biocompatibility and sterilization capabilities make it suitable for these critical applications. 7. Marine Industry: In the marine industry, stainless steel billets are used to manufacture components such as ship hulls, propellers, and fittings. The corrosion resistance of stainless steel is crucial in the harsh saltwater environment. 8. Power Generation Industry: Power plants employ stainless steel billets for manufacturing boilers, heat exchangers, and turbine components. The high-temperature and corrosion resistance properties of stainless steel make it suitable for these demanding applications. In conclusion, stainless steel billets possess exceptional properties such as strength, corrosion resistance, and temperature resistance, allowing them to have a wide range of applications across industries. From construction and automotive to aerospace and medical sectors, stainless steel billets play a vital role in manufacturing critical components and equipment.
Q:Fish pole carbon cloth tcf. Vcf. Svf. Hcf. On behalf of what?
According to the T value difference, broadly divided into 4 categoriesHCF: for 24T advanced carbon fiber materialSCF: for 30T advanced carbon fiber materialVCF: for 40T~50T premium carbon fiber materialTCF: for 55T~80T top carbon fiber materialHVF, HCF means high carbon fiber, H High (Senior).HVF:High, Volume, Fiber carbon fiber material 30T-40T.HCF:High, Volume, Carbon, Fiber carbon fiber material 24T."SVF" and "SCF" mean "super high carbon fiber", and "H" means "Super"SVF:Super, High, Volume, Carbon, Fiber carbon fiber material 40T-60T.SCF:Super, Volume, Carbon, Fiber carbon fiber material 30T.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords