• Prime quality prepainted galvanized steel 620mm System 1
  • Prime quality prepainted galvanized steel 620mm System 2
  • Prime quality prepainted galvanized steel 620mm System 3
  • Prime quality prepainted galvanized steel 620mm System 4
  • Prime quality prepainted galvanized steel 620mm System 5
  • Prime quality prepainted galvanized steel 620mm System 6
Prime quality prepainted galvanized steel 620mm

Prime quality prepainted galvanized steel 620mm

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Construction building material galvanized color prepainted cold

rolled steel coil

 

Prepainted steel sheet is coated with organic layer, which provides higher anti-corrosion property and

a longer lifespan than that of galvanized steel sheets.

 

The base metals for prepainted steel sheet consist of cold-rolled, HDG electro-galvanized and hot-dip

Alu-zinc coated. The finish coats of prepainted steel sheets can be classified into groups as follows:

polyester, silicon modified polyesters, polyvinylidene fluoride, high-durability polyester, etc

Prime quality prepainted galvanized steel 620mm

 

Standard and Grade :

Pre-paint galvanized steel coil



ASTM A755M-03

EN10169:2006

JISG 3312-2012

Commercial quality

                  CS

DX51D+Z

CGCC

 

 

 

Structure steel

SS GRADE 230

S220GD+Z

CGC340

SS GRADE 255

S250GD+Z

CGC400

SS GRADE 275

S280GD+Z

CGC440

SS GRADE 340

S320GD+Z

CGC490

SS GRADE550

S350GD+Z

CGC570


S550GD+Z


Application:

Outdoor

Roof, roof structure, surface sheet of balcony, frame of window, door of garage, rolled shutter door, booth, Persian blinds, cabana, etc

Indoor

Door, isolater, frame of door, light steel structure of house, home electronic appliances, ect.


Q:How are steel billets handled during transportation?
To ensure the safety and integrity of steel billets during transportation, great care is typically taken. Specialized equipment, such as cranes, forklifts, or conveyors, is commonly used to lift and transport the heavy billets. Before being transported, the billets are often bundled or secured together to prevent shifting or falling. This bundling process may involve tightly holding the billets with steel straps or bands, ensuring they remain stable throughout transportation. Protective measures are also frequently implemented to prevent external damage. For example, the billets can be covered with protective coatings, such as oil or rust inhibitors, to shield them from moisture and corrosion. This is especially important when transporting billets over long distances or in unfavorable weather conditions. When it comes to loading the billets onto trucks, trains, or ships, careful attention is paid to balancing the weight distribution to avoid any imbalances or tipping during transit. The transportation vehicles used are designed to handle heavy loads and often have additional mechanisms, like straps, latches, or containers, to further secure the billets. During transit, the vehicles carrying the steel billets are operated with caution to minimize sudden movements or impacts. Drivers may need to follow specific routes or adhere to speed limits to ensure a smooth and safe journey. Regular inspections and maintenance of the transportation vehicles are carried out to ensure their reliability and prevent any mechanical failures that could jeopardize the safety of the billets. In conclusion, the transportation of steel billets requires meticulous planning, secure bundling, protective measures, and safe handling techniques. These practices are implemented to safeguard the billets and ensure they reach their destination in optimal condition, ready for further processing or utilization in various industries.
Q:What is the average density of a steel billet?
The average density of a steel billet is typically around 7.8 grams per cubic centimeter.
Q:Can steel billets be polished for improved surface finish?
Yes, steel billets can be polished to achieve an improved surface finish. Polishing is a mechanical process that involves removing a thin layer of the material's surface to smooth out any imperfections or roughness. It can be done using various techniques such as abrasive polishing, chemical polishing, or electrochemical polishing. Polishing steel billets not only enhances their aesthetic appeal but also improves their functional properties. A polished surface reduces friction, which can be beneficial in applications where smooth movement or reduced wear is required. Additionally, a polished surface can improve the corrosion resistance of steel by creating a barrier against environmental factors. However, it is important to note that the extent to which a steel billet can be polished depends on its composition and properties. Some alloys may be more easily polished than others, and certain surface finishes may require more extensive polishing processes. It is also crucial to consider the desired application and the specific requirements for the steel billets before deciding on the appropriate polishing method.
Q:How are steel billets used in the production of aerospace components?
Steel billets are used in the production of aerospace components as they serve as the raw material for various manufacturing processes. These billets are typically forged or machined to create the desired shape and size of the aerospace component. Additionally, their high strength and durability make them suitable for withstanding the extreme conditions and rigorous demands of aerospace applications.
Q:How are steel billets used in the production of mining conveyors?
The production of mining conveyors heavily relies on steel billets, which are essential for creating sturdy and durable components. Mining conveyors are responsible for transporting bulk materials like coal, ore, and gravel across long distances. To withstand the harsh conditions of a mining environment, these conveyors require robustness and durability. Conveyor rollers, crucial for the conveyor system's functionality, are manufactured using steel billets as the raw material. These rollers provide support and guidance to the conveyor belt. Initially, the steel billets undergo a heating process, which enhances their malleability, making shaping easier. Once heated, they are rolled into desired shapes to form the conveyor rollers. By incorporating steel billets into the production of mining conveyors, the resulting rollers possess excellent strength and resistance to wear and tear. The steel's properties, including toughness and hardness, make it highly suitable for enduring heavy loads and abrasive materials. Moreover, steel billets offer customization options to cater to specific requirements. Each mining operation may have unique needs in terms of conveyor dimensions, load capacities, and environmental conditions. With the use of steel billets, manufacturers can produce conveyor rollers of various sizes and specifications, ensuring a tailored fit for each mining operation. In conclusion, steel billets play a vital role in the production of mining conveyors as they serve as the primary material for manufacturing conveyor rollers. These rollers are indispensable for supporting and guiding the conveyor belt, enabling efficient and reliable transportation of bulk materials in the mining industry. By utilizing steel billets, the resulting conveyor rollers are strong, durable, and capable of withstanding the harsh conditions prevalent in the mining sector.
Q:What are the different types of steel billet rolling mill automation systems?
The industry commonly utilizes various automation systems for steel billet rolling mills, aimed at enhancing efficiency, accuracy, and overall productivity. Here are some frequently employed automation systems: 1. Level 1 Automation: This constitutes the fundamental level of automation, encompassing basic control and monitoring functions. It typically employs programmable logic controllers (PLCs) to regulate and observe key aspects like speed, temperature, and pressure. While it provides essential functionality, manual intervention may be necessary for certain tasks. 2. Level 2 Automation: This level surpasses the basic control and monitoring functions of level 1. It incorporates advanced process control algorithms and models to optimize mill operations. Level 2 automation systems can automatically fine-tune mill parameters, including roll gap, roll speed, and cooling water flow, to achieve desired product specifications. Additionally, they offer real-time process monitoring and data analysis capabilities. 3. Level 3 Automation: This level concentrates on integrating the rolling mill with other plant systems, such as material handling and quality control. It encompasses features such as automatic scheduling, inventory management, and seamless data exchange between systems. Level 3 automation systems facilitate better coordination and synchronization of the entire production process, leading to increased efficiency and reduced downtime. 4. Artificial Intelligence (AI) and Machine Learning: Advanced automation systems harness AI and machine learning algorithms to continually learn from data collected during rolling mill operations. These systems have the ability to predict equipment failures, optimize production parameters, and even propose process improvements. AI and machine learning-based automation systems enable proactive maintenance, improved decision-making, and enhanced overall productivity. 5. Robotics and Robotics-assisted Automation: Some steel billet rolling mills employ robots for tasks such as loading and unloading, quality inspection, and maintenance. Robotic automation systems offer precision, speed, and repeatability, thereby reducing the reliance on manual labor and enhancing safety. These systems can be integrated with other automation systems to create a fully automated and efficient rolling mill operation. In summary, the various types of steel billet rolling mill automation systems provide different levels of functionality and sophistication. The choice of automation system depends on the mill's specific requirements, the desired level of automation, and the available budget.
Q:What are the different types of steel billet surface treatment defects?
Some common types of steel billet surface treatment defects include pitting, scaling, decarburization, scratches, and cracks.
Q:What are the potential applications of steel billets in the chemical aftermarket?
Steel billets have several potential applications in the chemical aftermarket. They can be used as raw material for the production of various chemical products, such as pipes, tanks, and containers. Additionally, steel billets can be utilized in the construction of chemical processing equipment, such as reactors and heat exchangers, due to their strength and durability. Furthermore, they can also serve as a base material for the fabrication of specialty alloys used in the chemical industry. Overall, steel billets play a crucial role in supporting the production and infrastructure needs of the chemical aftermarket.
Q:What is the role of steel billets in the manufacturing of railway signaling systems?
The manufacturing of railway signaling systems relies heavily on steel billets. These billets are crucial as they serve as the primary raw material for producing various components necessary for the functioning of these systems. Railway signaling systems have the responsibility of ensuring the safe and efficient movement of trains on the tracks. They consist of a complex network of electrical and mechanical devices that control traffic flow, provide information to train operators, and maintain a safe distance between trains. To manufacture these systems, steel billets are utilized in multiple ways. Firstly, structural components of railway signaling systems, such as signal poles, posts, and brackets, are produced using steel billets. These components provide support for the signaling devices, including lights, signals, and indicators. Steel is chosen for these structural elements due to its high strength, durability, and resistance to environmental factors like wind, rain, and temperature fluctuations. Secondly, steel billets are used in the production of various electrical components required in railway signaling systems. These components, including wiring conduits, junction boxes, and mounting plates, house and protect the electrical connections and circuitry. Steel's electrical conductivity properties make it an ideal material for these applications. Furthermore, steel billets are also employed in manufacturing mechanical components within railway signaling systems. These components, such as gears, levers, and linkages, facilitate the movement and operation of the signaling devices. Steel's mechanical properties, such as hardness and ability to withstand high loads, ensure the reliability and longevity of these mechanisms. In conclusion, steel billets are indispensable in the manufacturing of railway signaling systems as they provide the necessary raw material for producing structural, electrical, and mechanical components. Their strength, durability, electrical conductivity, and mechanical properties make them well-suited for the demanding requirements of these systems, ultimately contributing to the safe and efficient operation of railways.
Q:What are the weight ranges of steel billets?
The weight of steel billets can vary based on the industry's specific requirements and standards. Generally, steel billets can weigh anywhere from a few kilograms to several metric tons. The weight of a steel billet is determined by factors like its dimensions, intended application, and production process. Smaller steel billets, used in construction or manufacturing, typically weigh between 1 to 10 kilograms. Conversely, larger steel billets, commonly utilized in heavy machinery or infrastructure projects, can weigh anywhere from 10 to 100 metric tons or potentially more. It is important to note that these weight ranges are approximate estimates and may differ depending on the particular industry requirements and production capabilities.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords