• Hot Rolled Steel Billet 3SP Standard 175mm System 1
  • Hot Rolled Steel Billet 3SP Standard 175mm System 2
  • Hot Rolled Steel Billet 3SP Standard 175mm System 3
  • Hot Rolled Steel Billet 3SP Standard 175mm System 4
  • Hot Rolled Steel Billet 3SP Standard 175mm System 5
  • Hot Rolled Steel Billet 3SP Standard 175mm System 6
Hot Rolled Steel Billet 3SP Standard 175mm

Hot Rolled Steel Billet 3SP Standard 175mm

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Hot Rolled Steel Billet 3SP Standard 175mm

  RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

Description of Hot Rolled Steel Billet 3SP Standard 175mm
Prepainted Rolled steel Coil is a kind of coated steel coil/sheet. With the cold rolled steel of different strength and thickness as substrate, it is produced through applying Al-Zn coat on both faces by hot dip process. In its coating, Al accounts for about 55%, Si 1.6%, while the remaining is Zn. Aluminum zinc coils enjoys both the physical protective feature and durability of Al and the electrochemical protective property of Zn. And its surface has bright silver color and regular embossed-like figure, which are highly decorative. RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

Main Feature of Hot Rolled Steel Billet 3SP Standard 175mm

1.Corrosion resistance: It mainly depends on the zinc protection. When the zinc being worn,

2. Heat resistance: steel sheet has excellent heat resistance, can withstand high temperatures over 300 centigrade, and is similar with aluminized steel high temperature oxidation resistance. It often used in chimney pipes, ovens, fluorescent lighting device and the device cover. 
3. Heat reflective: Galvanized steel plate heat-reflective high rate is twice as galvanized steel, often used to make insulation materials.  RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing


Applications of Hot Rolled Steel Billet 3SP Standard 175mm
1. Construction and building: roofing; ventilating duct; handrail; partition panel;etc.

2. Electric appliance: refrigerator; washing machine; refrigerator; DVD;etc.

3.Transportation: oil tank; gas tank;road sign; etc.
4.Agriculture constructions :barn; etc.RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

5.Others:vending machine; game machine; auto parts spare parts etc.  

 RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

 

Specifications of Hot Rolled Steel Billet 3SP Standard 175mm

Product

Hot Rolled Steel Billet 3SP Standard 175mm

Material Grade

SGCC / SGCH  / DX51D+AZ, etc

Thickness

0.5-3.0mm

Width

700-1500mm

Tolerance

Thickness: +/-0.02mm , Width:+/-2mm

Zinc-coating

AZ30-150g/m2

Technique

Raw material: Hot rolled steel coil --> Cold rolled_>hot dipped galvalume

Surface

Dried, Chromated, Unoiled,RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

Spangle

Regular spangle , small spangle, zero spangle

ID

508MM 610MM

Coil weight

25MT max

Export package

Cardboard inner sleeves, Waterproof paper, galvanized steel covered and steel strip packed

 

FAQ of Hot Rolled Steel Billet 3SP Standard 175mm

We have organized several common questions for our clients,may help you sincerely:

1. What is the minimum order quantity ? 

Our MOQ is 100 mt for each size each specification. Usually we can offer discount if can buy large QTY once. RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

2. How long can we receive the product after ordering?

Our general delivery time is 30 days after confirmation, but so some special orders, we have offer special delivery time

3. How to guarantee the quality of the products?

We have established the international advanced quality management system ,every link from raw material to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.

4. What is the payment?

We accept T/T, L/C 

Q:What are the main factors affecting the thermal conductivity of steel billets?
The thermal conductivity of steel billets is primarily influenced by several factors. Firstly, the chemical composition of the steel plays a significant role in determining its thermal conductivity. Elements such as carbon, manganese, and silicon can affect the crystal structure and the arrangement of atoms within the steel, which in turn influences its ability to conduct heat. Generally, steels with a higher carbon content have lower thermal conductivity due to the increased presence of impurities and the formation of non-conductive carbides. Secondly, the microstructure of the steel also affects its thermal conductivity. Heat conduction in steel occurs through the movement of lattice vibrations, known as phonons. The presence of grain boundaries, dislocations, and other defects within the microstructure can impede the phonon movement, resulting in reduced thermal conductivity. Conversely, a more uniform and fine-grained microstructure tends to enhance thermal conductivity. Furthermore, the temperature of the steel billet can significantly impact its thermal conductivity. As the temperature increases, the thermal conductivity of steel generally decreases due to the increased scattering of phonons by lattice vibrations and the accompanying rise in thermal resistance. Another factor that influences the thermal conductivity of steel billets is their physical dimensions, particularly their cross-sectional area and length. The larger the cross-sectional area, the higher the thermal conductivity, as there is more space available for the heat to transfer through. Similarly, longer billets tend to have lower thermal conductivity due to the increased distance over which heat must be conducted. Lastly, the presence of impurities and alloying elements in the steel can also affect its thermal conductivity. For example, alloying elements like nickel, chromium, and copper can alter the crystal structure and lattice vibrations, thereby influencing the thermal conductivity of the steel billet. In summary, the main factors affecting the thermal conductivity of steel billets include the chemical composition, microstructure, temperature, physical dimensions, and the presence of impurities and alloying elements. Understanding these factors is crucial in various industrial applications where heat transfer and thermal management play a critical role.
Q:How are steel billets used in the manufacturing of tooling?
Tooling manufacturing relies heavily on steel billets as a vital element. Tooling involves the creation and design of tools utilized across different industries for the purpose of cutting, shaping, or forming materials. Steel billets are semi-finished goods formed by casting molten steel and subsequently hot rolling them into diverse sizes and shapes. In tooling manufacturing, steel billets serve as the fundamental material from which tools are shaped. Typically, these billets are crafted from high-quality steel alloys known for their exceptional strength, durability, and resistance to wear. The presence of these traits is crucial in tooling applications as they guarantee the longevity and performance of the tools. Once steel billets are acquired, they undergo a series of processes to transform them into tooling components. The initial step entails heating the billets to a specific temperature, often exceeding the recrystallization temperature. This elevation in temperature renders the steel more malleable and easier to shape. This process is referred to as hot working. Subsequent to heating, the steel billets are shaped into the desired form using a variety of techniques including forging, extrusion, or rolling. These methods enable the steel to be molded into intricate shapes such as dies or molds, which are commonly employed in tooling applications. The shaping process ensures that the tooling components possess the requisite dimensions, surface finish, and structural integrity to effectively fulfill their intended purpose. Once the tooling components are shaped, they may undergo additional heat treatments to further enhance their mechanical properties. Processes such as tempering, annealing, or hardening are frequently employed to modify the steel's hardness, toughness, and resistance to wear. These treatments augment the lifespan of the tooling and enhance its performance in demanding manufacturing environments. In summary, steel billets play a vital role in tooling manufacturing by serving as the initial material for shaping tooling components. The utilization of high-quality steel in billets provides the necessary strength and durability required for tooling applications. Through the process of shaping, heat treating, and finishing these billets, manufacturers are able to create tooling that meets the specific requirements of diverse industries, enabling efficient and precise cutting, shaping, and forming of materials.
Q:What is the role of steel billets in the construction industry?
Steel billets play a crucial role in the construction industry as they serve as the raw material for manufacturing various steel products. These solid, semi-finished forms of steel are typically used in the production of beams, bars, rods, and other structural components. By providing strength, durability, and flexibility to structures, steel billets contribute significantly to the overall integrity and safety of buildings, bridges, and other infrastructure projects.
Q:How do steel billets contribute to the manufacturing of agricultural equipment?
Steel billets are a crucial component in the manufacturing of agricultural equipment as they serve as the raw material for various parts and components. These billets are typically used to create strong and durable structures, such as frames, chassis, and supports, which provide stability and resilience to the equipment. Additionally, steel billets can be molded and shaped into different forms, allowing for the creation of custom-designed parts that enhance the efficiency and functionality of agricultural machinery. Overall, steel billets play a vital role in ensuring the reliability and long-lasting performance of agricultural equipment, making them essential in the manufacturing process.
Q:The form of carbon in carbon steels
In solid solution, it is in the interstitial space of lattice, resulting in lattice distortion. The solubility of carbon in gamma -Fe is maximal, but not more than 2.11%; the solubility of carbon in alpha -Fe is not more than 0.0218%; and in Delta 6-Fe, no more than 0.09%.
Q:What are the main factors affecting the corrosion resistance of stainless steel billets?
The corrosion resistance of stainless steel billets is affected by various factors. These include the composition of the alloy, the presence of impurities, the manufacturing process, and the environment in which the billets are exposed. The alloy composition is crucial in determining the corrosion resistance of stainless steel. The addition of elements like chromium, nickel, and molybdenum enhances its resistance to corrosion. These elements create a protective oxide layer on the surface, acting as a barrier against corrosive agents. Impurities in the stainless steel billets can also impact their corrosion resistance. For instance, the presence of sulfur can lead to the formation of sulfide inclusions, reducing overall corrosion resistance. Therefore, controlling impurities during the manufacturing process is vital for optimal corrosion resistance. The manufacturing process employed to produce stainless steel billets can also affect their corrosion resistance. Factors such as temperature, cooling rate, and the presence of contaminants during production influence the material's microstructure, thus impacting its corrosion resistance. Lastly, the environment in which the stainless steel billets are exposed plays a significant role in their corrosion resistance. Variables like temperature, humidity, pH level, and the presence of corrosive agents like acids or chlorides can expedite the corrosion process. Therefore, considering the specific environmental conditions is crucial when selecting stainless steel billets for a particular application. In conclusion, the corrosion resistance of stainless steel billets is influenced by the alloy composition, impurities, manufacturing process, and environment. By carefully considering these factors, one can select stainless steel billets with optimal corrosion resistance for various applications.
Q:What is carbon accumulation?
Generally refers to the polycarbonate, PC, is a kind of thermoplastic plastics, good transparency, good mechanical properties, surface hardness, common uses such as CD, plastic glasses, a fence, protective window, public places, vacuum cleaners, coffee machine, juicer barrel, refrigerator shelf, pure such as the bucket.
Q:How do steel billets contribute to the manufacturing of automotive components?
The manufacturing of automotive components heavily relies on steel billets, which are semi-finished metal pieces. These billets serve as the initial material for producing various automotive parts. Forging is a key process in which steel billets play a crucial role. It involves shaping the metal billets under high pressure and temperature, typically using a hammer or press. This technique enhances the strength, durability, and reliability of the components, making them suitable for the challenging conditions of the automotive industry. Engine components, such as crankshafts, connecting rods, and piston rods, also benefit from the use of steel billets. These parts require high strength and resistance to wear and tear. Starting with high-quality steel billets ensures that the resulting components possess the necessary mechanical properties to withstand the stresses and forces experienced by the engine during operation. Steel billets are additionally utilized in the production of suspension components, including control arms and stabilizer bars. These components are responsible for maintaining vehicle stability, handling, and comfort. By using steel billets, the suspension components can withstand the heavy loads and impacts encountered on the road, delivering a smooth and safe driving experience. Moreover, steel billets contribute to the manufacturing of safety-related automotive components. For example, they are used in producing structural components like chassis frames and body reinforcements. These components are vital for protecting occupants in the event of a collision or impact, and steel billets provide the necessary strength and rigidity to ensure their effectiveness. In summary, steel billets are an essential element in the manufacturing of automotive components. They enable the production of robust, long-lasting, and dependable parts, ensuring the overall performance, safety, and longevity of vehicles. Automotive manufacturers can meet the industry's demanding requirements and deliver high-performance vehicles to consumers by starting with high-quality steel billets.
Q:How are steel billets used in the manufacturing of automotive components?
Steel billets are an essential raw material used in the manufacturing of automotive components. These billets are semi-finished products that are shaped into various forms to create the necessary components. Firstly, steel billets are heated to a specific temperature to make them malleable and easier to work with. Once they reach the desired temperature, they are placed into a mold or die and subjected to intense pressure to shape them into the desired form. This process is known as forging. Automotive components such as engine parts, gears, axles, and suspension components require high strength and durability. Steel billets are preferred for these applications due to their excellent mechanical properties, including high tensile strength, toughness, and wear resistance. After the forging process, the shaped billets are further processed through various techniques such as machining, heat treatment, and surface finishing to achieve the final specifications required by automotive manufacturers. These processes ensure that the components meet the necessary performance standards, dimensional accuracy, and surface quality. The use of steel billets in the manufacturing of automotive components offers several advantages. Steel is readily available, cost-effective, and has a high recycling rate, making it an environmentally friendly choice. Additionally, steel's versatility allows for a wide range of component designs and customization options to meet specific automotive requirements. In conclusion, steel billets play a crucial role in the manufacturing of automotive components. Their malleability and excellent mechanical properties make them an ideal raw material for forging processes, enabling the production of high-strength and durable components used in various automotive applications.
Q:What is the role of steel billets in the manufacturing of automotive frames?
Steel billets play a crucial role in the manufacturing of automotive frames as they serve as the raw material for forging or rolling processes. The billets are heated and shaped into desired forms, providing the necessary strength and durability to support the vehicle's structure. These frames are designed to withstand various forces, ensuring safety and stability on the road.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords