• high quality bearing steel, GCr15, 40Cr, SAE1055, G20CrNiMo System 1
  • high quality bearing steel, GCr15, 40Cr, SAE1055, G20CrNiMo System 2
  • high quality bearing steel, GCr15, 40Cr, SAE1055, G20CrNiMo System 3
high quality bearing steel, GCr15, 40Cr, SAE1055, G20CrNiMo

high quality bearing steel, GCr15, 40Cr, SAE1055, G20CrNiMo

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
500 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specifications:

1) Grade: Bearing steel SAE 52100 / GCr15 round bars

2) Diameter: 20-500mm

3) Hot rolled/forged, annealed

Application:

Commom steel used to produce balls and rings of bearing. The product has characteristics of uniform-chemical composition, low percentage of harmful elements, high purity, well-distributed carbide, good surface quality. It also has characteristics of wide scope of plastic,stable heat-treatment quality, uniformand high hardness, high wear resistance,high strength of touching fatigue. It has excellent machining property afer spheroidize annealing.

The use of products The product is used to produce balls and rings of bearing. Future Development By rational rolling and cooling process, the product can be spheroidized on-line and can be used in drawing and machining directly by customers. By combining re-spheroidize annealing and re-crystallisation of semi-finished product, the steel wire process can be simplified.

Packaging & Delivery

Mark: Heat No. will be cold stamped and Steel grade, diameter (mm), length (mm), and the manufacturer LOGO and weight (kg) is painted.

Standard seaworthy packing or as customer required

Delivery time: Within 30 days after order is confirmed.

Benefits of Bearing Steels:

Cleanliness and freedom from objectionable microscopic slag type inclusions.

Shallow decarburized surface

Dimensional accuracy and excellent micro-structure uniformity.

Our Advantages:

Fast delivery

Non-standard sizes and made-to-order

Small min order quantity

Economical Pricing

Quality confirming to International Standards

Material Test Certificates for Quality Assurance

Technical Qualified After Sales

Excellent Delivery Conditions.

 

Q:How is maraging steel used in the production of aerospace components?
Maraging steel is extensively used in the production of aerospace components due to its exceptional strength, toughness, and resistance to wear and fatigue. Its unique properties, achieved through a special aging process, make it ideal for critical components such as landing gear, engine shafts, and missile casings. The high strength-to-weight ratio of maraging steel allows for lighter, more fuel-efficient aircraft, while its durability ensures long-lasting performance in demanding aerospace environments.
Q:How does free-cutting steel improve machinability?
Free-cutting steel improves machinability by incorporating additives such as sulfur or lead, which form small, brittle chips during the machining process. These chips help break the metal's continuous chip formation, resulting in improved chip control, reduced tool wear, and increased machining speeds. Additionally, free-cutting steel has improved surface finish and dimensional accuracy due to the formation of short, easily-managed chips.
Q:What are the common applications of stainless special steel?
Stainless special steel is commonly used in a wide range of applications due to its unique properties and characteristics. Some of the most common applications include kitchenware and cookware, cutlery, medical equipment, automotive parts, aerospace components, construction materials, and various industrial machinery. Its corrosion resistance, high strength, durability, and aesthetic appeal make it a preferred choice in these industries.
Q:How does special steel perform in terms of corrosion resistance in marine environments?
Special steel, also known as stainless steel, performs exceptionally well in terms of corrosion resistance in marine environments. The high levels of chromium and nickel present in the alloy composition of special steel make it highly resistant to corrosion caused by saltwater and other corrosive elements present in marine environments. The chromium content in special steel forms a protective oxide layer on its surface known as the passive layer. This passive layer acts as a shield, preventing the steel from coming into direct contact with corrosive elements. It effectively blocks oxygen and moisture from reaching the underlying steel, thereby inhibiting corrosion. Additionally, the presence of nickel in special steel enhances its corrosion resistance even further. Nickel improves the stability of the passive layer and increases its ability to self-repair if it gets damaged. This property makes special steel highly reliable and long-lasting in marine environments, where exposure to saltwater, high humidity, and varying temperatures can accelerate corrosion processes. Furthermore, special steel offers excellent resistance to pitting corrosion and crevice corrosion, which are common types of corrosion encountered in marine environments. Pitting corrosion occurs when localized areas of the steel's surface are attacked, resulting in small pits or holes. Crevice corrosion occurs in confined spaces such as gaps or joints, where stagnant water or debris can accumulate and accelerate corrosion. Special steel's resistance to these types of corrosion ensures its durability and integrity in marine applications. Overall, special steel demonstrates outstanding corrosion resistance in marine environments due to its high chromium and nickel content. Its ability to form a protective passive layer, resist pitting and crevice corrosion, and self-repair makes it a preferred choice for various marine applications, including shipbuilding, offshore structures, and seawater desalination plants.
Q:How does heat treatment affect the properties of special steel?
Heat treatment can significantly impact the properties of special steel. By subjecting the steel to controlled heating and cooling processes, its mechanical properties can be modified. For instance, heat treatment can enhance the steel's hardness, strength, and toughness, making it more suitable for specific applications. Additionally, heat treatment can alter the steel's microstructure, such as grain size and distribution, thereby affecting its corrosion resistance and overall performance. Overall, heat treatment plays a crucial role in tailoring the properties of special steel to meet desired requirements.
Q:How is wear-resistant tool steel used in the production of cutting tools?
Wear-resistant tool steel is used in the production of cutting tools due to its exceptional hardness and resistance to wear and abrasion. This steel is specifically designed to maintain its sharpness and durability even when subjected to high temperatures and intense cutting forces. By using wear-resistant tool steel, cutting tools can effectively cut through various materials without losing their edge, resulting in improved efficiency and longer tool life.
Q:How is special steel used in the production of surgical instruments?
Special steel is used in the production of surgical instruments due to its unique properties such as corrosion resistance, high strength, and durability. This type of steel is specifically designed to withstand the harsh conditions of surgical procedures, ensuring the instruments remain sharp, sterile, and reliable. The use of special steel in surgical instruments guarantees precision and quality, ultimately enhancing the safety and effectiveness of medical procedures.
Q:What are the properties of structural steel?
Structural steel possesses several key properties that make it an ideal material for construction purposes. Firstly, it has a high strength-to-weight ratio, meaning it can withstand heavy loads and forces while remaining relatively lightweight. Secondly, it is highly durable and resistant to corrosion, making it suitable for both indoor and outdoor applications. Additionally, structural steel is highly versatile and can be easily fabricated into various shapes and sizes to meet specific design requirements. Lastly, it has excellent fire resistance properties, as it does not burn or contribute to the spread of flames, ensuring the safety of structures in case of fire incidents.
Q:What are the effects of different heat treatment processes on special steel?
Special steel can undergo various heat treatment processes that significantly impact its properties and performance. These processes are designed to modify the steel's microstructure, influencing its hardness, strength, toughness, and other mechanical properties. One widely used heat treatment process is annealing, which entails heating the steel to a specific temperature and gradually cooling it. Annealing serves to alleviate internal stresses, enhance machinability, and improve the steel's ductility. Additionally, it refines the grain structure, promoting uniformity and decreasing the likelihood of cracks or defects. Another heat treatment process is quenching, which involves heating the steel to a high temperature and rapidly cooling it by immersing it in a quenching medium like oil or water. This process results in the formation of a hardened microstructure, augmenting the steel's hardness and resistance to wear. However, quenching can also render the steel brittle, which is why tempering is often performed subsequently. Tempering encompasses reheating the quenched steel to a lower temperature and maintaining it there for a specific duration. This process reduces the brittleness caused by quenching and enhances the steel's toughness and ductility. The resulting microstructure strikes a balance between hardness and toughness, rendering the steel suitable for applications necessitating both strength and impact resistance. Other heat treatment processes, such as normalizing and stress relieving, can also be employed to attain specific properties in special steel. Normalizing entails heating the steel above its critical point and allowing it to cool in still air. This process refines the grain structure and improves the steel's strength and machinability. Conversely, stress relieving aims to eliminate residual stresses from the steel by heating it below its critical point and gradually cooling it. In conclusion, the effects of various heat treatment processes on special steel are manifold. These processes can modify the steel's microstructure, leading to alterations in hardness, strength, toughness, and other mechanical properties. By selecting the appropriate heat treatment process, manufacturers can customize the steel's characteristics to meet specific requirements, ensuring optimal performance and longevity.
Q:How long does special steel typically last in various applications?
The lifespan of special steel in various applications can vary depending on several factors. Special steel is known for its exceptional strength, durability, and resistance to corrosion, making it suitable for a wide range of applications. However, the actual lifespan of special steel will depend on the specific application, maintenance practices, and environmental conditions it is exposed to. In general, special steel can last for several decades or even longer when used in industries such as construction, automotive, aerospace, and manufacturing. For instance, in building structures, special steel can last for 50 to 100 years, thanks to its robustness and ability to withstand extreme loads and weather conditions. In automotive applications, special steel components like engine parts, suspension systems, and body frames can have a lifespan of 15 to 30 years, given that they are properly maintained and not subjected to excessive wear and tear. When it comes to the aerospace industry, special steel is commonly used in critical components like turbine blades, landing gears, and fuselage structures. These parts undergo rigorous testing and inspection procedures and are designed to last for decades, typically around 30 to 50 years, before requiring replacement or refurbishment. In manufacturing processes, special steel tools and dies can have a lifespan ranging from a few years to several decades, depending on the intensity of use, the material being processed, and the maintenance practices employed. Proper lubrication, cooling, and regular maintenance can significantly extend the lifespan of these tools. It is important to note that the lifespan of special steel can be adversely affected by factors such as exposure to harsh chemicals, high temperatures, aggressive environments, or inadequate maintenance. Therefore, regular inspections, maintenance, and adherence to recommended usage guidelines are crucial in ensuring the longevity of special steel in various applications.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords