• Bearing Steel with High Quality System 1
  • Bearing Steel with High Quality System 2
Bearing Steel with High Quality

Bearing Steel with High Quality

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering Bearing Steelsat great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications: 

Our products have been used in all kinds of areas, such as aviation, aerospace, navigation, nuclear, energy, chemical industry, electronic information, petrochemical, automotive, instrument and meter, Communication ,transportation, and medical instruments, etc. Bearing ring,steel rolling mill ,machinery, 100Cr6 bearing steel ball is widely used in high-speed and low-noise bearing, bicycle, motorcycle, automobile, bags, electronics.

Product Advantages:

OKorder's Bearing Steels are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

 

Grade

AISI 52100, ASTM E52100, DIN 1.3505,JIS SUJ2, GCr15

Dimensions

Diameter: 30-60mm

Length: 2000-13000mm or as required

Shape

Round Bar

Type

Alloy Steel Bar

Delivery Condition

Black Surface

Material

Bearing Steel

Technique

Hot Rolled


First the famous 1C-1.5Cr steel from which the majority of bearings are made. Its structure is apparently well-understood and the focus is on purity in order to avoid inclusions which initiate fatigue during rolling contact. Then there is the M50 steel and its variants, from which bearings which serve at slightly higher temperatures in aeroengines are manufactured, based on secondary-hardened martensite.


Tapered roller bearing are generally used to support combined load mainly consisting of radial load. Their cups are separable for easy assembling ,During mounting and using, radial clearance and axial clearance can be adjusted and preloaded mounting can be made.

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

 

Images:


       Usage of Bearing Steel                  Usage of Bearing Steel

Q:Is special steel suitable for manufacturing firearms?
Indeed, manufacturing firearms necessitates the use of special steel, which boasts remarkable attributes including high strength, hardness, and resistance to wear and corrosion. These properties are crucial as firearms must endure extreme pressures, recoil forces, and intense heat generated during firing. Various special steel alloys, such as stainless steel or chrome-molybdenum steel, offer exceptional tensile strength, enabling firearms to withstand the immense pressure resulting from the combustion of gunpowder. Additionally, the hardness of special steel guarantees the durability of critical components like barrels and receivers, ensuring they remain intact and free from deformations or fractures even with frequent use. Moreover, firearms require resistance to wear and corrosion as they frequently encounter harsh environmental conditions and diverse weather patterns. Special steel alloys are meticulously engineered to possess superior resistance to both wear and corrosion, assuring that firearms remain operational and reliable even after prolonged exposure to moisture or extended usage. Furthermore, special steel alloys can be effortlessly machined and shaped into intricate forms, empowering manufacturers to produce firearm components with meticulous precision. This versatility in manufacturing processes facilitates the creation of firearms that meet stringent quality standards and precise specifications. To conclude, special steel is undeniably the ideal choice for manufacturing firearms due to its exceptional strength, hardness, resistance to wear and corrosion, as well as its ease of machining. These properties secure the reliability, durability, and performance of firearms, making special steel the optimal material for this purpose.
Q:What are the specific requirements for special steel used in the textile machinery industry?
The specific requirements for special steel used in the textile machinery industry can vary depending on the specific application and machinery involved. However, there are some general requirements that are common in this industry. 1. Corrosion resistance: Textile machinery is often exposed to moisture, chemicals, and other corrosive substances. Therefore, the special steel used in this industry must have excellent corrosion resistance properties to ensure durability and longevity. 2. High strength: Textile machinery operates under high loads and stresses. Hence, the special steel used must have high strength to withstand these forces and prevent any deformation or failure. 3. Wear resistance: Textile machinery involves constant contact between different components, resulting in wear and tear. Therefore, the special steel used should have good wear resistance properties to minimize the effects of friction and prolong the lifespan of the machinery. 4. Heat resistance: Textile machinery often operates at high temperatures due to the friction generated during the manufacturing process. The special steel used should have excellent heat resistance to prevent any deformation or loss of mechanical properties under high temperature conditions. 5. Machinability: The special steel used in the textile machinery industry should be easily machinable to allow for the production of complex components with precise dimensions. This ensures that the machinery operates smoothly and efficiently. 6. Cost-effectiveness: While meeting all the above requirements, it is essential for the special steel used in the textile machinery industry to be cost-effective. Manufacturers aim to balance the performance and cost to ensure that the machinery remains competitive in the market without compromising on quality. It is important to note that these requirements can vary depending on the specific application within the textile machinery industry. Therefore, it is crucial for manufacturers and engineers to carefully evaluate the requirements of their machinery and select the appropriate special steel accordingly.
Q:What are the properties of corrosion-resistant stainless steel?
Corrosion-resistant stainless steel possesses a unique combination of properties that make it highly resistant to corrosion. These properties include a high level of chromium content, which forms a protective oxide layer on the surface of the steel, preventing further corrosion. Additionally, it has low carbon content, which further enhances its corrosion resistance. The presence of other alloying elements like nickel and molybdenum also contributes to its resistance against corrosion in various environments, making it suitable for a wide range of applications.
Q:What are the main applications of special steel in the medical field?
Special steel is widely used in the medical field for various applications. Some of the main applications include surgical instruments, implants, and medical devices. Surgical instruments such as forceps, scalpels, and scissors are often made from special steel due to its high strength, durability, and corrosion resistance. Implants, such as joint replacements and dental implants, are commonly made from special steel alloys that provide strength, biocompatibility, and resistance to wear and tear. Additionally, special steel is used in the production of medical devices like needles, catheters, and stents, where its properties contribute to their effectiveness and safety.
Q:What are the different methods of improving the toughness of special steel?
There are several methods that can be employed to improve the toughness of special steel. One common method is through the use of alloying elements. By adding certain elements such as nickel, chromium, or manganese to the steel composition, the toughness can be enhanced. These alloying elements help in increasing the strength and resistance to cracking or fracturing. Another technique is heat treatment. Different heat treatment processes like quenching and tempering can be applied to special steel to modify its microstructure and enhance its toughness. Quenching involves rapidly cooling the steel from a high temperature, which creates a hardened structure, while tempering involves reheating the quenched steel to a specific temperature and then slowly cooling it. Furthermore, the use of grain refinement techniques can also improve the toughness of special steel. By controlling the size and distribution of grains within the steel, it is possible to increase its resistance to fracture. Techniques like grain size control through recrystallization and severe plastic deformation can be utilized to refine the grain structure and improve toughness. Additionally, controlling the impurity content in the steel can contribute to its toughness. Impurities like sulfur and phosphorus can lead to brittleness, so minimizing their presence through refining and purification processes can enhance the steel's toughness. Moreover, surface treatment methods such as shot peening or surface hardening can be employed to improve the toughness of special steel. Shot peening involves bombarding the steel surface with small spherical particles to induce compressive stress, which helps in resisting crack propagation. Surface hardening techniques like carburizing or nitriding can also be used to create a hardened layer on the surface, improving its toughness. In conclusion, the different methods of improving the toughness of special steel include alloying, heat treatment, grain refinement, impurity control, and surface treatment. These techniques can be combined or used individually to enhance the steel's properties and make it more resistant to cracking or fracturing.
Q:How is special steel used in the packaging industry?
Special steel is used in the packaging industry to create durable, corrosion-resistant, and high-strength packaging materials. It is commonly used for manufacturing metal cans, drums, containers, and closures, ensuring the safe storage and transportation of various products, including food, chemicals, and hazardous materials. The unique properties of special steel make it an ideal choice for packaging applications as it enhances the strength, longevity, and protection of the packaging, ultimately ensuring the quality and integrity of the goods being packaged.
Q:What are the different international standards for special steel?
There are several international standards for special steel that are recognized globally. Some of the prominent ones include: 1. AISI (American Iron and Steel Institute): AISI standards are widely used in North America and are often referred to as the SAE (Society of Automotive Engineers) standards. They provide specifications for various types of special steel alloys used in diverse applications. 2. ASTM (American Society for Testing and Materials): ASTM standards cover a wide range of materials, including special steel. These standards specify the chemical composition, mechanical properties, and testing procedures for various grades of special steel. 3. DIN (Deutsches Institut für Normung): DIN standards are commonly used in Germany and Europe. These standards define the composition, mechanical properties, and other characteristics of special steel alloys. 4. JIS (Japanese Industrial Standards): JIS standards are widely adopted in Japan and are recognized internationally. They provide specifications for special steel alloys used in different industries, including automotive, machinery, and construction. 5. BS (British Standards): BS standards are widely used in the United Kingdom and provide specifications for special steel alloys. These standards cover various aspects such as chemical composition, mechanical properties, and testing procedures. 6. ISO (International Organization for Standardization): ISO standards are globally recognized and provide specifications for a wide range of materials, including special steel. ISO standards ensure consistency and quality in the production and use of special steel alloys across different countries. These international standards play a crucial role in ensuring the quality, compatibility, and performance of special steel alloys used in various industries worldwide. They provide a common framework for manufacturers, suppliers, and consumers to communicate and ensure that the steel meets specific requirements and industry standards.
Q:What are the different passivation techniques used for special steel?
There are several passivation techniques used for special steel, including chemical passivation, electrochemical passivation, and mechanical passivation. Chemical passivation involves treating the steel surface with acids or other chemical solutions to remove impurities and create a passive film that protects against corrosion. Electrochemical passivation utilizes an electrical current to enhance the formation of the protective oxide layer. Mechanical passivation involves processes like abrasive blasting or grinding to remove contaminants and improve the surface finish. These techniques are commonly employed to enhance the corrosion resistance and durability of special steel.
Q:What are the different cutting grades of special steel?
There are several cutting grades of special steel that are commonly used in various industries. These cutting grades are designed to possess specific properties and characteristics that make them suitable for different cutting applications. Some of the different cutting grades of special steel include: 1. High-speed steel (HSS): This cutting grade is known for its excellent hardness, wear resistance, and heat resistance. It can retain its hardness at high temperatures, making it ideal for cutting tools used in high-speed machining operations. 2. Tool steel: Tool steel is a versatile cutting grade that is used for a wide range of cutting applications. It offers high hardness, toughness, and abrasion resistance, making it suitable for cutting tools, dies, and molds. 3. Stainless steel: Stainless steel is a popular cutting grade due to its corrosion resistance and durability. It is commonly used in the food, medical, and automotive industries, where precision cutting and cleanliness are crucial. 4. Carbon steel: Carbon steel is a commonly used cutting grade known for its high strength and toughness. It is often used for cutting tools, knives, and blades. However, carbon steel is susceptible to corrosion, so proper maintenance and care are necessary to prevent rusting. 5. Alloy steel: Alloy steel is a cutting grade that is made by combining different elements to enhance its properties. It offers improved hardness, strength, and wear resistance, making it suitable for high-stress cutting applications. Alloy steel is commonly used in the aerospace, automotive, and construction industries. These are just a few examples of the different cutting grades of special steel. Each grade has its own unique properties and advantages, allowing manufacturers to choose the most suitable grade based on the specific cutting requirements and conditions.
Q:What are the different methods of surface polishing for special steel?
There are several methods of surface polishing for special steel, each with its own advantages and applications. Some of the commonly used methods include mechanical polishing, electrochemical polishing, and chemical polishing. 1. Mechanical Polishing: This method involves the use of abrasive materials to remove surface imperfections and create a smooth and reflective surface. It can be done manually or using automated polishing machines. Mechanical polishing is effective for removing scratches, dents, and other surface defects. It is commonly used in industries such as automotive, aerospace, and precision engineering. 2. Electrochemical Polishing: Also known as electrolytic polishing, this method uses an electrolyte solution and an electric current to dissolve and remove surface material. Electrochemical polishing can provide a high level of surface smoothness and can be particularly useful for complex shapes and hard-to-reach areas. It is commonly used in industries such as medical devices, semiconductors, and jewelry manufacturing. 3. Chemical Polishing: This method involves the use of chemical solutions to selectively remove surface material and create a smooth finish. Chemical polishing is effective for removing oxide layers, stains, and contaminants. It is often used for stainless steel and other corrosion-resistant alloys. The process involves immersing the steel in a chemical bath and controlling factors such as temperature, concentration, and time to achieve the desired surface finish. 4. Electropolishing: Electropolishing is an electrochemical process that combines the benefits of electrochemical and chemical polishing. It involves the application of an electric current to remove surface material while simultaneously dissolving it in an electrolyte solution. Electropolishing can provide a highly smooth, clean, and corrosion-resistant surface finish. It is commonly used for stainless steel and other alloys in industries such as pharmaceutical, food processing, and semiconductor manufacturing. 5. Vibratory Polishing: This method utilizes vibrating media, such as ceramic chips or abrasive pellets, along with a polishing compound to remove surface imperfections. The steel parts are placed in a vibratory tumbler or bowl where the continuous movement causes the media to rub against the parts, resulting in a polished surface. Vibratory polishing is commonly used for small or delicate parts and can be an efficient and cost-effective method. Overall, the choice of surface polishing method for special steel depends on factors such as the desired surface finish, part geometry, material properties, and industry requirements. It is important to consider these factors and consult with experts or specialists to determine the most suitable method for a specific application.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords