• seamless steel pipe for gas, water or oil industries System 1
seamless steel pipe for gas, water or oil industries

seamless steel pipe for gas, water or oil industries

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
5000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specifications

1.ASTM A106/A53 GR.B
2.Outer diameter:10.3-194.4mm
3.Wall thickness:6.5-59mm
4.Cer:ISO9001:2008,API

 

Seamless steel pipe                

 

(1) Standard: GB8163, ASTM A106/A53/API 5L

 

(2) Material: 10#, 20#, 16Mn, A106Gr.A/B/C,

 

(3)Specification: O.D: 21.3mm-711.2 mm
(4) W.T: 2.11mm-59.54mm

Technical Parameters of Seamless Steel Pipe

 

A53:  Chemical components and mechanical property

Stan-

dard 

Trade

 mark

Chemical componentsMechanical property
CSiMnP,SCuNiMoCrV

Tensile

Strength

Yield

Strength

Elongation

ASTM

 A53

A≤0.25/≤0.92≤0.05≤0.06≤0.40≤0.15≤0.40≤0.08≥330≥205≥29.5
B≤0.30/≤1.2≤0.05≤0.06≤0.40≤0.15≤0.40≤0.08≥415 ≥240≥29.5

 

A106: Chemical components and mechanical property

Stan-dard Trade mark Chemical components         Mechanical property   
 CSiMnP,S Cu Ni Mo Cr VTensile Strength 

Yield 

Strength

 Elongation

 ASTM 

A106

 ≤0.30 ≥0.100.29-1.06 ≤0.035 ≤0.40  ≤0.40≤0.15 ≤0.40 ≤0.08 ≥415 ≥240≥30  
 C≤0.35  ≥0.10 0.29-1.06≤0.035 ≤0.40 ≤0.40 ≤0.15  ≤0.40≤0.08   ≥485  ≥275 ≥30 

 

PSL 1: Chemical components and mechanical property

Class and SortChemical componentsMechanical property
C(Max)Mn(Max)P(Max)S(Max)Tensile Strength(Min)Yield Strength(Min)
A25CL I0.210.600.0300.03045.00031025.000172
CL II0.210.600.0300.030
A0.220.900.0300.03048.00033130.000207
B0.281.200.0300.03060.00041435.000241
X420.281.300.0300.03060.00041442.000290
X460.281.400.0300.03063.00043446.000317
X520.281.400.0300.03066.00045552.000359
X560.281.400.0300.03071.00049056.000386
X600.281.400.0300.03075.00051760.000414
X650.281.400.0300.03077.00053165.000448
X700.281.400.0300.03082.00056570.000483

 

Our catalog of Seamless steel pipe

 

 

itemmaterialstandard

specification

(OD*WT)mm

usage
alloy pipe

Cr5Mo. 15CrMo

13CrMo44

12Cr1MoV P22

T91,P91,P9,

T9 Wb36

GB5310-95 GB9948-88

ASTMA335/A335M

ASTMA213/213M

DIN17175-79

JISG3467-88

JISG3458-88
16-824*2-100

The seamless steal pipes

features resistance to

 high pressure, high/low temperature

and corrosion and is used in

the industries of petroleum, chemical

engineering and. Electric power

as well as boiler

High-pressure

boiler pipe

20G,A106,

ST 45

GB5310-95

ASTM A 106-99

DIN17175-79
14-630*2-80

Temperature-resistant

seamless steel pipe

far high-pressure boiler

Seamless pipes

for petroleum

20, 12CrMo,

15CrMo
GB9948-8810-530*1.5-36

Boiler pipes for refinery,

 heat-exchanging pipes,

seamless steel pipes for pipeline

High-pressure

Seamless pipes

 for fertilizer

making equipment

20, 16Mn,

Q345
GB6479-200018-530*3-40

Fertilizer making

equipment and pipe line

Low and medium-

pressure boiled pipe

10,20GB3087-199910-530*2-40

Over-heat pipe for low

 and medium pressure boiler,

boiling water pipe, locomotive

smoke pipe(big and small)

Fluid pipe20, Q345GB/T8163-19998-630*1.0-40Fluid feeding
Structural pipe

20, Q345 10,

20,35,45,

16Mn,Q345B

GB/T8162-19996-1020*1.5-100For common structure
Line pipeGr.BAPI60-630*1.5-40

Carrying gas, water or oil

 in the industries of

petroleum and natural gas

Hydraulic

 prop pipe

27SiMnGB/T17396-199870-377*9-40Hydraulic support and prop

Q: DN80 seamless steel tube, what is the standard thickness?
Generally speaking, the diameter of the pipe can be divided into outer diameter, inner diameter and nominal diameter. Tubes are made of seamless steel tubes. The outer diameter of the tubes is indicated by the letter D, followed by additional outer diameter dimensions and wall thicknesses such as seamless steel tubes with an outer diameter of 108.
Q: Can steel pipes be used for fire sprinkler systems?
Yes, steel pipes can be used for fire sprinkler systems. Steel pipes are commonly used in fire sprinkler systems due to their durability, high heat resistance, and ability to withstand high water pressure. They are also cost-effective and widely available, making them a popular choice for such systems.
Q: How do you calculate the bending moment of a steel pipe?
The bending moment of a steel pipe can be calculated using the formula M = F * d, where M is the bending moment, F is the applied force, and d is the distance from the neutral axis to the point where the bending moment is being calculated.
Q: Can steel pipes be used for irrigation systems?
Yes, steel pipes can be used for irrigation systems. Steel pipes are known for their durability, strength, and resistance to corrosion, making them suitable for use in irrigation systems where they may be exposed to water and various environmental conditions. Additionally, steel pipes can handle high water pressure and are available in different sizes, allowing for efficient water distribution throughout the irrigation system.
Q: How are steel pipes used in the manufacturing of agricultural machinery?
Steel pipes are commonly used in the manufacturing of agricultural machinery for various purposes such as structural support, fluid transportation, and protection. They are utilized to create the framework and chassis of the machinery, providing strength and durability. Steel pipes are also used to transport fluids such as fuel, water, and chemicals throughout the machinery. Additionally, steel pipes can be used to protect vulnerable components from external elements, ensuring the longevity and reliability of the agricultural machinery.
Q: What are the challenges faced in transporting steel pipes?
Some of the challenges faced in transporting steel pipes include their large size and weight, which can make them difficult to handle and transport. Additionally, their shape can make it challenging to secure them properly during transportation to prevent damage or accidents. The corrosive nature of steel pipes can also pose a challenge, as special precautions need to be taken to protect them from rust or other forms of damage during transportation. Finally, the cost of transportation can be a challenge, as steel pipes often require specialized equipment and vehicles, which can be expensive to rent or purchase.
Q: How do you calculate the pipe flow rate coefficient for steel pipes?
To calculate the pipe flow rate coefficient for steel pipes, you need to consider various factors related to the pipe's dimensions, material properties, and the fluid flowing through it. The pipe flow rate coefficient, also known as the discharge coefficient (Cd), is a dimensionless value that represents the efficiency of fluid flow through a pipe. Here are the steps to calculate the pipe flow rate coefficient for steel pipes: 1. Determine the inside diameter (ID) of the steel pipe. This is the measurement of the internal cross-sectional area of the pipe through which the fluid flows. 2. Calculate the pipe's cross-sectional area (A) using the formula: A = π * (ID/2)^2. Here, π is the mathematical constant pi (approximately 3.14). 3. Measure the pressure drop (∆P) across the steel pipe. This is the difference in pressure between the pipe's inlet and outlet. 4. Measure the fluid flow rate (Q) through the pipe. This can be done using flow meters or by measuring the time it takes for a known volume of fluid to pass through the pipe. 5. Calculate the velocity (V) of the fluid flowing through the pipe using the formula: V = Q / A. Here, Q is the fluid flow rate and A is the cross-sectional area of the pipe. 6. Calculate the pipe flow rate coefficient (Cd) using the formula: Cd = Q / (A * √(2 * ∆P / ρ)). Here, ρ is the fluid density. This formula is derived from the Bernoulli's equation and takes into account the pressure drop, fluid flow rate, and fluid density. It is important to note that the pipe flow rate coefficient for steel pipes can vary depending on factors such as pipe roughness, fluid viscosity, and Reynolds number. Therefore, it is advisable to consult relevant engineering standards, such as the Darcy-Weisbach equation or the Hazen-Williams equation, to obtain more accurate values for specific pipe configurations and fluid properties.
Q: How are steel pipes protected from corrosion in corrosive environments?
Steel pipes are protected from corrosion in corrosive environments through various methods such as applying protective coatings, using cathodic protection systems, and implementing corrosion inhibitors.
Q: What's the difference between hot dip galvanizing and cold galvanizing? Which kind of galvanizing method is good?
There are two kinds of hot dip galvanizing, zinc plated and non galvanized. The flowers must be hot-dip galvanized, without flowers, similar to galvanized.
Q: What is the cost of steel pipes?
The cost of steel pipes can vary depending on various factors such as size, grade, quantity, and current market conditions. It is best to contact a supplier or check with local suppliers to get an accurate and up-to-date price quote.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords