• Prime quality square alloy steel billet 120mm Q235 System 1
  • Prime quality square alloy steel billet 120mm Q235 System 2
  • Prime quality square alloy steel billet 120mm Q235 System 3
  • Prime quality square alloy steel billet 120mm Q235 System 4
  • Prime quality square alloy steel billet 120mm Q235 System 5
  • Prime quality square alloy steel billet 120mm Q235 System 6
Prime quality square alloy steel billet 120mm Q235

Prime quality square alloy steel billet 120mm Q235

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Prime quality square alloy steel billet 120mm Q235

 Prime quality square alloy steel billet 120mm Q235

Description of Prime quality square alloy steel billet 120mm Q235 

1. Prepainted steel coil is coated with organic layer, which provides higher anti-corrosion property and a longer lifespan than that of galvanized or galvalume steel sheets. 

2. The base metals for prepainted steel coil consist of cold rolled, HDGI Steel, electro-galvanized and hot-dip alu-zinc coated steel. The finish coats of prepainted steel coil can be classified into groups as follows: polyester, silicon modified polyesters, polyvinylidene fluoride, high-durability polyester, etc.

3. The production process has evolved from one-coating-and-one-baking to double-coating-and-double-baking, and even three-coating-and-three-baking.

4. The color of the prepainted steel coil has a very wide selection, like orange, cream-colored, dark sky blue, sea blue, bright red, brick red, ivory white, porcelain blue, etc.

5. The prepainted steel coils can also be classified into groups by their surface textures, namely regular prepainted sheets, embossed sheets and printed sheets.

 Prime quality square alloy steel billet 120mm Q235

 

Main Feature of Prime quality square alloy steel billet 120mm Q235

Uncoated CR steel sheet 

With the features of in line with the international highest standards in demension and shape, excellent surface finish and properties, the products are mainly used in home appliance and automobile industries.

Galvanized steel sheet(include HDG and EG)

With the features of good corrosion resistance, the products are mainly used in automobile, home appliance, electronics, building and machinery manufacture industries, etc.

Precoated steel sheet

With the features of enviromental protection and good processablility, long lasting surface durability, rich in colors, the products are maily used in building, home appliance and furniture industries, etc.

 

Applications of Prime quality square alloy steel billet 120mm Q235

Construction
Manufacture anticorrosion, industrial and civil architecture roof boarding, roof grille
Light industries
Home appliance's case, civil chimney, kitchen utensils
Auto industry
Corrosion resistant parts of cars
Agriculture
Food storage, meat and aquatic products' freezing and processing equipment
Commerce
Equipments to store and transport materials, and packing implements

  Prime quality square alloy steel billet 120mm Q235

 

Specifications of Prime quality square alloy steel billet 120mm Q235

Product

Prime quality square alloy steel billet 120mm Q235

Material Grade

SGCC / SGCH  / DX51D+AZ, etc

Thickness

0.6-3.0mm

Width

500-1500mm

Tolerance

Thickness: +/-0.02mm , Width:+/-2mm

Zinc-coating

Z30-150g/m2

Technique

Raw material: Hot rolled steel coil --> Cold rolled_>hot dipped galvalume

Surface

Dried, Chromated, Unoiled

Spangle

Regular spangle , small spangle, zero spangle

ID

508MM 610MM

Coil weight

1-25MT

Export package

Cardboard inner sleeves, Waterproof paper, galvanized steel covered and steel strip packed

  

FAQ of Prime quality square alloy steel billet 120mm Q235

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.


 


Q:What are the main factors affecting the machinability of alloy steel billets?
The machinability of alloy steel billets is influenced by several key factors. Firstly, the alloy composition of the steel plays a significant role. Different alloying elements, such as chromium, nickel, molybdenum, and vanadium, can affect the machinability of the steel. Elements that form hard carbides, such as chromium and molybdenum, tend to decrease machinability, while elements that promote the formation of softer carbides, such as nickel and vanadium, can enhance machinability. Secondly, the heat treatment of the alloy steel billets can greatly impact machinability. Heat treatment processes like annealing, normalizing, or quenching and tempering can alter the microstructure and hardness of the steel. Proper heat treatment can improve machinability by reducing hardness and increasing toughness, while improper heat treatment can result in increased hardness and decreased machinability. Thirdly, the presence of impurities and inclusions in the alloy steel billets can affect machinability. Inclusions, such as sulfides, oxides, and non-metallic particles, can cause tool wear and chip breakability issues during machining. Therefore, the cleanliness and purity of the alloy steel billets are crucial factors in determining machinability. Furthermore, the mechanical properties of the alloy steel, such as hardness, strength, and ductility, can influence machinability. Higher hardness and strength levels can make machining more challenging, while increased ductility and toughness can improve machinability. Lastly, the cutting conditions and machining parameters, such as cutting speed, feed rate, depth of cut, and tool material, also impact machinability. Optimal cutting conditions should be selected based on the specific alloy steel composition and desired machinability. Adequate cooling and lubrication during machining are also essential to reduce friction and heat, preventing tool wear and improving machinability. In conclusion, the machinability of alloy steel billets is influenced by factors such as alloy composition, heat treatment, impurities and inclusions, mechanical properties, and cutting conditions. Proper consideration of these factors can help optimize the machinability of alloy steel and ensure efficient and effective machining processes.
Q:What are the main factors affecting the microstructure of steel billets?
The main factors affecting the microstructure of steel billets include the composition of the steel, the cooling rate during solidification, the presence of impurities or alloying elements, and the heat treatment processes applied.
Q:What are the main factors affecting the fatigue strength of alloy steel billets?
The main factors affecting the fatigue strength of alloy steel billets include the composition of the alloy, the presence of impurities or defects, the heat treatment process, surface conditions, and the presence of residual stresses. Additionally, the applied load, frequency, and environmental conditions can also influence the fatigue strength of alloy steel billets.
Q:What are the different types of steel billet welding processes?
There are several different types of steel billet welding processes that are commonly used in various industries. These processes include: 1. Shielded Metal Arc Welding (SMAW): Also known as stick welding, SMAW involves a flux-coated electrode that is manually fed into the welding pool. It is a versatile and widely used process for welding steel billets. 2. Gas Metal Arc Welding (GMAW): This process, commonly known as MIG welding, uses a continuously fed wire electrode and a shielding gas to protect the weld pool. It is a popular method for welding steel billets due to its efficiency and ease of use. 3. Flux-Cored Arc Welding (FCAW): FCAW is similar to GMAW, but it uses a tubular electrode filled with flux instead of a solid wire. This process is often preferred for outdoor or windy conditions as the flux provides better protection against atmospheric contamination. 4. Submerged Arc Welding (SAW): SAW involves feeding a consumable electrode and a granular flux into the weld zone, while the arc remains submerged beneath a layer of flux. It is commonly used for welding large steel billets due to its high deposition rates and deep penetration capabilities. 5. Gas Tungsten Arc Welding (GTAW): Also known as TIG welding, GTAW uses a non-consumable tungsten electrode and a shielding gas to protect the weld pool. It is a precise and high-quality welding process suitable for thin steel billets or applications that require exceptional weld aesthetics. 6. Electroslag Welding (ESW): ESW is a highly efficient process used for welding thick steel billets. It involves melting a consumable electrode and the base metal in a molten slag pool, which provides protection and acts as a filler material. 7. Laser Beam Welding (LBW): LBW utilizes a high-energy laser beam to melt and join steel billets together. It is a precise and fast welding process commonly used in industries such as automotive and aerospace. Each of these welding processes has its own advantages and limitations, and the choice of process depends on factors such as the type and thickness of the steel billet, desired weld quality, production requirements, and cost considerations.
Q:How are steel billets coated or painted?
Steel billets can be coated or painted through several methods. One common technique is hot-dip galvanizing, where the billets are immersed in a bath of molten zinc. This process forms a protective zinc coating on the surface of the steel, preventing corrosion. Another method is electroplating, which involves the deposition of a thin layer of metal, such as zinc or nickel, onto the billets using an electric current. Additionally, steel billets can be painted using various coating systems, such as powder coating or liquid paint, to provide a decorative finish or additional protection against rust and environmental factors.
Q:How are steel billets different from steel bars?
Steel billets and steel bars are both common forms of steel products used in various industries. However, there are some key differences between them. 1. Shape and Size: Steel billets are generally square or rectangular in shape and have larger cross-sectional areas compared to steel bars. They are typically produced in sizes ranging from 100x100mm to 150x150mm or larger. On the other hand, steel bars are available in various shapes such as round, square, flat, or hexagonal, and come in smaller sizes depending on their intended application. 2. Manufacturing Process: Steel billets are produced through a primary steelmaking process called continuous casting or ingot casting. In this process, molten steel is solidified into a semi-finished product, which is then further processed into steel bars or other forms. Steel bars, on the other hand, are produced through a secondary steelmaking process called hot rolling or cold drawing. This involves passing the steel billet through a series of rolling mills or drawing machines to achieve the desired shape and size. 3. Usage: Steel billets are primarily used as raw materials for the production of various steel products, including bars, rods, wire, pipes, and structural steel sections. They serve as a starting point for further processing and shaping. Steel bars, on the other hand, are the finished product that is used in construction, manufacturing, and other industries. They are commonly utilized in the production of reinforced concrete structures, automotive components, machinery parts, and tools. 4. Composition and Properties: Both steel billets and bars are made from carbon steel or alloy steel, but the specific composition and properties may vary depending on the desired end use. Steel billets are often made from low-carbon or mild steel, which provides good formability and weldability. Steel bars, on the other hand, can be made from a wide range of steel grades, including low carbon, medium carbon, and high carbon steels, as well as alloy steels. The choice of steel grade depends on the desired mechanical properties, such as strength, hardness, and ductility. In summary, steel billets are the semi-finished products used as raw materials for manufacturing steel bars and other steel products. They differ from steel bars in terms of shape, size, manufacturing process, usage, and composition.
Q:How are steel billets heated for rolling?
Steel billets are heated for rolling using a process called induction heating, where an electric current is passed through the billets to generate heat. This method allows for precise and efficient heating, ensuring uniform temperature distribution throughout the billets.
Q:What are the main factors affecting the toughness of steel billets?
Steel billets' toughness can be influenced by several main factors. Firstly, the chemical composition of the steel, including the presence of elements like carbon, manganese, and silicon, has a significant impact on its toughness. For instance, higher carbon content increases hardness but decreases toughness, while the addition of alloying elements like nickel or chromium can improve both strength and toughness. Secondly, the heat treatment process, involving the rate of cooling and temperature, can greatly affect the toughness of steel. Quenching and tempering are common techniques used to enhance toughness by controlling the microstructure and reducing brittle phases. Thirdly, the microstructure of steel, determined by factors such as cooling rate, grain size, and phase distribution, greatly influences its toughness. Fine-grained structures tend to exhibit better toughness compared to coarse-grained ones as smaller grains inhibit crack propagation. Moreover, impurities and inclusions in steel can negatively impact its toughness. These impurities act as stress concentrators, leading to localized failure and reduced overall toughness. Ensuring proper purification and impurity removal during the steelmaking process is crucial. Additionally, various manufacturing processes, such as rolling or forging, can influence the toughness of steel billets. These processes induce residual stresses and introduce defects that affect the material's toughness. Proper control and optimization of these processes can enhance toughness. Lastly, the specific application and service conditions of the steel billets also determine its toughness requirements. Factors like temperature, stress levels, and exposure to corrosive environments impact toughness performance. Understanding and accounting for these conditions is crucial in selecting the appropriate steel grade and ensuring long-term durability. In conclusion, the toughness of steel billets is influenced by factors such as composition, heat treatment, microstructure, impurities, manufacturing processes, and service conditions. By carefully considering and optimizing these factors, manufacturers can produce steel billets with desired toughness properties for various applications.
Q:How do steel billets contribute to the manufacturing of construction materials?
Steel billets play a vital role in the manufacturing of construction materials. They serve as the raw material that is transformed into various steel products used in construction projects. Firstly, steel billets are the starting point for the production of different types of steel products such as bars, rods, beams, and sections. These products are essential components in the construction industry as they provide structural support and reinforcement. For example, steel bars are commonly used in the construction of reinforced concrete structures, providing strength and durability to the building. Furthermore, steel billets are also utilized in the manufacturing of pipes and tubes, which are crucial for plumbing, heating, ventilation, and air conditioning (HVAC) systems in buildings. These pipes and tubes ensure the efficient flow of water, gas, and air, contributing to the overall functionality and comfort of the structure. Moreover, steel billets are utilized in the production of steel sheets and plates, which are widely used in construction applications such as roofing, cladding, and flooring. Steel sheets and plates offer excellent strength, corrosion resistance, and aesthetic appeal. They are commonly used in high-rise buildings, warehouses, and industrial facilities. Additionally, steel billets are crucial in the production of prefabricated construction materials. Prefabrication involves the manufacturing of building components off-site, which are then transported and assembled on-site. Steel billets are used to create prefabricated steel frames, trusses, and panels, streamlining the construction process and reducing time and labor costs. In summary, steel billets are the foundation of the construction materials industry. They are transformed into various steel products that are essential for structural support, reinforcement, plumbing, HVAC systems, roofing, cladding, flooring, and prefabrication. The use of steel billets ensures the strength, durability, and functionality of construction materials, contributing significantly to the overall quality of construction projects.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords