• Prime Q275 175mm Square Alloy Steel Billet System 1
  • Prime Q275 175mm Square Alloy Steel Billet System 2
  • Prime Q275 175mm Square Alloy Steel Billet System 3
  • Prime Q275 175mm Square Alloy Steel Billet System 4
  • Prime Q275 175mm Square Alloy Steel Billet System 5
  • Prime Q275 175mm Square Alloy Steel Billet System 6
Prime Q275 175mm Square Alloy Steel Billet

Prime Q275 175mm Square Alloy Steel Billet

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Prime Q275 175mm Square Alloy Steel Billet  

 Prime Q275 175mm Square Alloy Steel Billet

Description of Prime Q275 175mm Square Alloy Steel Billet  

1. Prepainted steel coil is coated with organic layer, which provides higher anti-corrosion property and a longer lifespan than that of galvanized or galvalume steel sheets. 

2. The base metals for prepainted steel coil consist of cold rolled, HDGI Steel, electro-galvanized and hot-dip alu-zinc coated steel. The finish coats of prepainted steel coil can be classified into groups as follows: polyester, silicon modified polyesters, polyvinylidene fluoride, high-durability polyester, etc.

3. The production process has evolved from one-coating-and-one-baking to double-coating-and-double-baking, and even three-coating-and-three-baking.

4. The color of the prepainted steel coil has a very wide selection, like orange, cream-colored, dark sky blue, sea blue, bright red, brick red, ivory white, porcelain blue, etc.

5. The prepainted steel coils can also be classified into groups by their surface textures, namely regular prepainted sheets, embossed sheets and printed sheets.

 Prime Q275 175mm Square Alloy Steel Billet

 

Main Feature of Prime Q275 175mm Square Alloy Steel Billet  

They were one of several reasons for the wind to be taken out of the  sails of the recent oil price momentum. Kuwait’s oil minister said that his  country would only commit to a production freeze if all major producers are  involved, including Iran. We also had Goldman telling us that oil markets will  not rebalance at $40/bbl as it throws a lifeline to cash-strapped US  producers.

If it is talk of a production freeze that is behind the rally it  shows how low expectations have fallen. It is in the nature of oil people to  talk the market up. Any bullish crumb is given exaggerated significance and any  port in a storm will do. It is all but fact that the oil market will be tighter  in the second half of this year when seasonal demand shoots up and US production  continues to decline. It was the same picture last year. If OPEC and key  non-OPEC production is frozen that will ensure the daily surplus will fall, but  in all likelihood there will still be a surplus and there is an enormous global  stockbuild to burn off. 

 

Applications of Prime Q275 175mm Square Alloy Steel Billet 

 A. Corrugated design makes it excellent waterproof performance
 B. Materials as prepainted steel sheets, galvanized steel sheets, galvalume (Al-Zn coated sheets) are available to make corrugated sheet.
 C.Those material are durable, anti-corrosion in bad weather for 20-30 years based on it's Zinc(Galvanized) coating or AZ (Galvalume) coating.
 D. Different shape of the sheet make it suitable for any style of buildings.
 E.Easy to install, no need special tools to fix the sheet.
 F.Light weight due to high strength to weight ratio of steel. Light weight means easier handling lower shipping costs, easier installation
 G. Different color is availbe base on the RAL Standard make your building more beautiful.
 H. We will provide the best solutions if you don't have a exact idea of the specification you want for the steel sheet based on your weather conditions, engineering structure, construction budget and so on.

  Prime Q275 175mm Square Alloy Steel Billet

 

Specifications of Prime Q275 175mm Square Alloy Steel Billet 

Product

Billet

Material Grade

SGCC / SGCH  / DX51D+AZ, etc

Thickness

0.6-3.0mm

Width

500-1500mm

Tolerance

Thickness: +/-0.02mm , Width:+/-2mm

Zinc-coating

Z30-150g/m2

Technique

Raw material: Hot rolled steel coil --> Cold rolled_>hot dipped galvalume

Surface

Dried, Chromated, Unoiled

Spangle

Regular spangle , small spangle, zero spangle

ID

508MM 610MM

Coil weight

1-25MT

Export package

Cardboard inner sleeves, Waterproof paper, galvanized steel covered and steel strip packed

  

FAQ of Prime Q275 175mm Square Alloy Steel Billet 

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?

Poor trade figures from China punctured commodity optimism yesterday  although they came with warnings that perhaps the numbers were distorted by  Chinese New Year celebrations and we will have to wait for the March figures to  gain a true picture of the state of China’s landing. Exports for February were  -25.4% and imports -13.8% year-on-year.


Q:Charcoal classification
Hard charcoal. By hardwood such as Fagaceae Quercus, Castanopsis trees, secondary birch and etc..Broad-leaved charcoal. Charcoal made from a mixture of hard and soft hardwood.Pine charcoal. Carbon fired from pine or other needle wood. In addition to bamboo and bamboo charcoal burning with shells, stones (coconut shell, peach stone charcoal etc.) wood raw material firing. Charcoal collected from household stoves in the cell known as carbon. If the charcoal is crushed and mixed with proper adhesive, and then pressed, formed and roasted, the deposit is made. According to the burning process of silica and carbon black.
Q:What are the main alloying elements used in steel billet production?
Steel billet production utilizes various alloying elements, such as carbon, manganese, silicon, and chromium. The primary alloying element, carbon, plays a crucial role in augmenting the steel's strength and hardness. Meanwhile, manganese is incorporated to enhance the steel's toughness and hardenability. Silicon is introduced to fortify the steel against corrosion and oxidation. Lastly, chromium is employed to heighten the steel's hardness, corrosion resistance, and wear resistance. Throughout the production process, these alloying elements are meticulously regulated and added to the steel to attain the desired properties and attributes in the ultimate steel billets.
Q:How do steel billets compare to other forms of raw steel material?
Steel billets possess unique advantages when compared to other forms of steel. Their exceptional strength and durability are well-known. They are manufactured using a meticulously controlled process that ensures uniform composition and consistent grain structure, resulting in superior mechanical properties. Consequently, steel billets are highly suitable for industries requiring robust and dependable steel, such as construction, automotive, and manufacturing. Additionally, steel billets offer remarkable machinability. Their uniform shape and size facilitate easy handling and processing, thereby reducing waste and improving production efficiency. This proves especially advantageous for manufacturers utilizing precision machining techniques to create intricate and complex components. Another benefit of steel billets lies in their versatility. They can be forged, rolled, or extruded into various shapes and sizes, allowing for customization according to specific requirements. This adaptability renders steel billets suitable for an extensive range of applications, ranging from structural beams and bars to pipes and rods. Moreover, steel billets boast a relatively low carbon content, making them more ductile compared to other forms of raw steel material. This enhanced ductility enables simpler shaping and forming, making steel billets particularly appropriate for hot working processes like forging and rolling. In summary, steel billets offer numerous advantages over other forms of raw steel material. Their high strength, excellent machinability, versatility, and ductility make them the preferred choice for many industries. Whether it is for structural purposes or the manufacturing of complex components, steel billets possess the necessary properties and flexibility to meet a wide range of requirements.
Q:What are the different types of defects that can occur during casting of steel billets?
During the casting of steel billets, various types of defects may arise, impacting the quality and integrity of the final product. Some commonly encountered defects are as follows: 1. Shrinkage: Shrinkage defects manifest when the metal cools and solidifies unevenly, resulting in voids or shrinkage cavities within the billet. This irregular cooling weakens the structure and diminishes its overall strength. 2. Porosity: Porosity refers to the presence of trapped gas or air bubbles within the billet. This defect can occur due to improper gating or venting, inadequate control of pouring temperature, or the existence of impurities in the molten metal. Porosity can reduce the mechanical properties of the billet and increase its susceptibility to failure. 3. Inclusions: Inclusions denote the presence of non-metallic materials, such as oxides, sulfides, or refractory particles, that become trapped in the billet during casting. These inclusions can weaken the metal, resulting in reduced ductility, increased brittleness, and decreased resistance to fatigue or corrosion. 4. Cold shuts: Cold shuts arise when two streams of molten metal fail to fuse adequately during casting, resulting in a visible line or seam within the billet. Cold shuts can weaken the billet and cause failure under stress. 5. Hot tearing: Hot tearing occurs when the solidifying metal is constrained from contracting, leading to localized cracking or tearing. This phenomenon is typically caused by high thermal stresses or insufficient feeding of the metal during solidification. Hot tearing significantly impacts the structural integrity of the billet. 6. Misruns: Misruns are defects that occur when the molten metal fails to completely fill the mold cavity. This defect can arise due to inadequate pouring temperature, improper gating or venting, or insufficient fluidity of the metal. Misruns result in incomplete, undersized, or malformed billets with reduced mechanical properties. 7. Surface defects: Surface defects encompass surface cracks, scabs, or roughness that may occur during the solidification or cooling process. These defects contribute to increased rejection rates, reduced machinability, and compromised surface finish of the billet. It is of utmost importance to identify and minimize these defects during the casting process to ensure the production of high-quality steel billets with the desired mechanical properties and dimensional accuracy.
Q:How are steel billets used in the production of machinery and equipment?
Steel billets are used in the production of machinery and equipment as raw material for forging, casting, and machining processes. They are heated, shaped, and molded into various components such as gears, shafts, and structural parts, which are then assembled to create the final machinery or equipment. The high strength and durability of steel billets make them ideal for handling heavy loads, withstanding high temperatures, and ensuring the reliability and longevity of the machinery and equipment.
Q:What are the different methods of shaping steel billets?
There exist various techniques for shaping steel billets, each possessing its own benefits and applications. Common methods include forging, rolling, extrusion, and casting. 1. Forging involves applying pressure through hammers or presses to shape the steel billet. This technique allows for precise shaping, producing complex shapes with high strength and durability. It finds extensive use in manufacturing components for the automotive, aerospace, and construction industries. 2. Rolling entails passing the steel billet through a series of rollers to reduce its thickness and shape it into different forms like sheets, plates, or bars. This method is highly efficient, capable of producing large quantities of steel products with consistent dimensions and surface finish. It is commonly employed in the production of structural steel, pipes, and tubes. 3. Extrusion involves forcing the steel billet through a die to create the desired shape. This technique is particularly suitable for producing long and continuous profiles with complex cross-sections, such as rods, tubes, and wire. It allows for precise control over the shape and dimensions of the final product and is commonly used in manufacturing aluminum window frames, automotive parts, and electrical conductors. 4. Casting entails pouring molten steel into a mold and allowing it to solidify into the desired shape. This process is versatile, capable of producing intricate and large-scale components with minimal material waste. Casting is commonly used in the production of steel ingots, pipes, and large structural components. These various methods of shaping steel billets offer distinct advantages in terms of efficiency, precision, and versatility. The choice of method depends on specific requirements for the desired steel product, including size, shape, strength, and cost-effectiveness.
Q:Can steel billets be used for making sculptures?
Yes, steel billets can be used for making sculptures. Steel is a versatile material that offers strength, durability, and the ability to be shaped and molded into various forms. Many artists have embraced steel as a medium for creating sculptures due to its modern aesthetic and its ability to withstand outdoor conditions. By heating, cutting, and welding the steel billets, artists can transform them into unique and imaginative sculptures.
Q:What are the different types of steel billet surface treatment defects?
There are several types of steel billet surface treatment defects that can occur during the manufacturing process. These defects can affect the quality and appearance of the steel billets, and it is important to identify and address them to ensure the overall performance of the final product. 1. Scale: Scale is a common defect that occurs when the steel billet is exposed to high temperatures during the manufacturing process. It appears as a layer of oxide on the surface of the billet, which can affect the adhesion of coatings or paints. 2. Inclusions: Inclusions are non-metallic particles or impurities that can be present on the surface of the steel billet. These inclusions can be caused by various factors, such as inadequate cleaning or improper handling during the manufacturing process. They can negatively impact the mechanical properties of the steel and reduce its overall performance. 3. Decarburization: Decarburization is a defect that occurs when the surface layer of the steel billet loses its carbon content due to exposure to high temperatures or a lack of protective atmosphere. This can lead to reduced hardness and strength in the affected area. 4. Pitting: Pitting is a localized defect that appears as small cavities or pits on the surface of the steel billet. It can be caused by the presence of impurities or by exposure to corrosive environments. Pitting can compromise the structural integrity of the billet and make it more susceptible to corrosion. 5. Surface cracks: Cracks can occur on the surface of the steel billet due to various factors, such as thermal stress, improper handling, or inadequate cooling. Surface cracks can weaken the billet and increase the risk of failure during subsequent processing or use. 6. Surface roughness: Surface roughness refers to an uneven or irregular surface texture on the steel billet. It can be caused by factors such as improper machining, inadequate cleaning, or the presence of scale or inclusions. Surface roughness can affect the appearance of the billet and may also impact its performance in certain applications. Overall, it is crucial to identify and address these surface treatment defects to ensure the quality and reliability of steel billets. Proper manufacturing processes, including adequate cleaning, protective atmospheres, and appropriate handling, can help minimize the occurrence of these defects and ensure the optimal performance of the final product.
Q:How are steel billets used in the production of electrical appliances?
Steel billets are used in the production of electrical appliances as a raw material that is shaped and formed into various components such as casings, frames, brackets, and other structural parts. These billets are melted, cast, and rolled into the desired shape and size, providing the necessary strength, stability, and durability required for electrical appliances.
Q:How are steel billets reheated before rolling or forging?
Steel billets are reheated before rolling or forging by passing them through a furnace or a reheating furnace, which raises their temperature to a specific range. This process, known as billet reheating, is crucial as it improves the billets' malleability, making them easier to shape and work with during the subsequent rolling or forging operations.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords