• Photovoltaic Grid-Connected Inverter SG630MX-E Solar Inverter System 1
  • Photovoltaic Grid-Connected Inverter SG630MX-E Solar Inverter System 2
  • Photovoltaic Grid-Connected Inverter SG630MX-E Solar Inverter System 3
  • Photovoltaic Grid-Connected Inverter SG630MX-E Solar Inverter System 4
  • Photovoltaic Grid-Connected Inverter SG630MX-E Solar Inverter System 5
Photovoltaic Grid-Connected Inverter SG630MX-E Solar Inverter

Photovoltaic Grid-Connected Inverter SG630MX-E Solar Inverter

Ref Price:
$30,000.00 - 40,000.00 / unit get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
10 unit
Supply Capability:
1000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1. Structure of Photovoltaic Grid-Connected Inverter SG630MX-E Description

A solar inverter, or PV inverter, or Solar converter, converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into

 autility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network.

It is acritical BOS–component in a photovoltaic system, allowing the use of ordinary AC-powered equipment.

Solar inverters have special functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.

Suitable for 50Hz/60Hz grid, could be used in Asia, Australia and Europe.

  

2. Main Features of the Photovoltaic Grid-Connected Inverter SG630MX-E

• LVRT (Zero-voltage Ride-through)

• Active power continuously adjustable (0~100%)

• Reactive power control with power factor from 0.9 lagging to 0.9 leading

• DC input voltage up to 1000V

• Latest 32 bit DSP chip, advanced digital lock-in technique, more quickly and precisely

• -30℃~+55℃ continuously operating at rated power

• Continuously and stably working in high altitude environment

• Auxiliary heater (Optional)

 

3. Photovoltaic Grid-Connected Inverter SG630MX-E Images

 

4. Photovoltaic Grid-Connected Inverter SG630MX-E Specification

Input Side Data

Max. PV input power

713KW

Max. PV input voltage

1000V

Startup voltage

635V

Min. operation voltage

615V

Max. PV input current

1160A

MPP voltage range

615~850V

No. of DC inputs

8

Output Side Data

Nominal AC output power

630kVA

Max. AC output apparent power

700KVA

Max. AC output current

1010A

THD

< 3 %  (Nominal power)

Nominal AC voltage

400V

AC voltage range

320V~460V

Nominal grid frequency

50/60Hz

Grid frequency range

47~52/57~62Hz

Power factor

>0.99@default value at nominal power, (adj. 0.9 overexited ~0.9 underexited)

Isolated transformer

No

DC current injection

<0.5 %In

Efficiency

Max. efficiency

98.60%

Max. European efficiency

98.50%

Protection

Input side disconnection device

DC load switch

Output side disconnection device

AC load Switch

DC overvoltage protection

Yes

AC overvoltage protection

Yes

Grid monitoring

Yes

Ground fault monitoring

Yes

Over temperature protection

Yes

Insulation monitoring

Yes

Surge arrester for auxiliary supply

Yes

General Data

Dimensions(W×H×D)

1606×2304×860mm

Weight

1700kg

Operating ambient temperature range

-30~65℃(>55℃ derating)

Night power consumption

<100W

External auxiliary supply voltage

400V

Cooling method

Temperature controlled air-cooling

Ingress protection rating

IP21

Allowable relative humidity range

0~95% no condensing

Max. operating altitude

6000m (>3000m derating)

Fresh air consumption

4500 m3/h

Display

Colored touch screen

Communication

RS485/Modbus, Ethernet(Opt.)

 

5. FAQ of Photovoltaic Grid-Connected Inverter SG630MX-E

Q1. What is the difference between inverter and solar inverter?

A1. Inverter only has AC inpput, but solar inverter both connect to AC input and solar panel, it saves more power 

Q2. What is the difference between MPPT&PWM?

A2. MPPT has higher efficiency, it can track the max power point and won't waste energy.

Q:Can a solar inverter be used with a smart home automation system?
Certainly! A smart home automation system can indeed work together with a solar inverter. Nowadays, many solar inverters come with communication capabilities built-in, like Wi-Fi or Ethernet connectivity. This means that they can easily be integrated into a smart home automation system. This integration allows homeowners to remotely monitor and control their solar power production and usage using a smartphone app or a central control panel. By having a smart home automation system, users can keep track of real-time energy generation, make adjustments to settings, and receive notifications about system performance or any potential issues. This integration not only enhances the convenience and efficiency of managing solar power but also enables better optimization and synchronization with other smart devices and appliances in the household.
Q:Can a solar inverter be used with different types of backup power configurations?
Yes, a solar inverter can be used with different types of backup power configurations. Solar inverters are designed to convert the DC power generated by solar panels into AC power that can be used to power electrical devices and appliances. They can be integrated with various backup power systems such as batteries, generators, or grid connections to provide uninterrupted power supply during periods of low solar generation or power outages. The versatility of solar inverters allows for flexibility in choosing and combining backup power sources based on specific needs and preferences.
Q:What is the maximum AC voltage that a solar inverter can provide?
The maximum AC voltage that a solar inverter can provide typically depends on the specific model and its specifications. However, in general, most solar inverters are designed to produce a maximum AC voltage of around 240 volts in residential installations and up to 480 volts in commercial or utility-scale installations.
Q:Photovoltaic grid-connected inverter problem
The first zero line is the AC output. Any AC output of the inverter will have zero line, whether it is isolated or non-isolated. Isolation is the safety of high voltage inverters and regulators. 50KW above the inverter almost with the transformer.
Q:Are there any disadvantages of using a solar inverter?
Yes, there are some disadvantages of using a solar inverter. One major disadvantage is the initial cost of purchasing and installing the inverter, which can be relatively high. Additionally, solar inverters are susceptible to damage from power surges or lightning strikes, which can result in costly repairs. Furthermore, solar inverters require regular maintenance to ensure optimal performance, which can add to the overall cost. Lastly, solar inverters can produce a humming noise during operation, which may be a nuisance in certain environments.
Q:Can a solar inverter be used with a solar tracker system?
Yes, a solar inverter can be used with a solar tracker system. In fact, using a solar inverter with a solar tracker system can enhance the overall efficiency and performance of the system. The solar inverter converts the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power electrical appliances or be fed into the grid. This AC power can then be easily integrated with the solar tracker system to continuously adjust the position and alignment of the solar panels to maximize their exposure to sunlight. Overall, combining a solar inverter with a solar tracker system can optimize the energy generation and increase the overall output of the solar power system.
Q:What is the maximum number of parallel inverters that can be connected?
The maximum number of parallel inverters that can be connected depends on various factors such as the power rating, capacity, and design of the inverters, as well as the electrical system they are being connected to. It is best to consult the manufacturer's specifications and guidelines to determine the maximum number of parallel inverters that can be safely connected.
Q:What is the role of a solar inverter in power factor correction?
The role of a solar inverter in power factor correction is to convert the direct current (DC) generated by the solar panels into alternating current (AC) that can be used by the electrical grid. In doing so, the solar inverter ensures that the AC power being fed into the grid has a power factor close to unity, which means it is efficient and does not cause any unnecessary strain on the electrical system. This helps to improve the overall power quality and efficiency of the solar energy system.
Q:Can a solar inverter be used with a single solar panel?
Yes, a solar inverter can be used with a single solar panel. The purpose of a solar inverter is to convert the direct current (DC) produced by the solar panel into alternating current (AC) that can be used to power electrical devices or be fed into the electrical grid. Even with a single solar panel, the inverter can still perform this function effectively.
Q:Generally a large grid-connected photovoltaic power plant will have several inverters
The use of a high-power grid-connected inverter into the grid, the need for line design is relatively simple, because the DC and AC lines are separated, the use of convergence box to summarize, DC bus and then into the grid inverter

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords