• Grid Connected U.S. Solar Inverter 3600W System 1
  • Grid Connected U.S. Solar Inverter 3600W System 2
  • Grid Connected U.S. Solar Inverter 3600W System 3
Grid Connected U.S. Solar Inverter 3600W

Grid Connected U.S. Solar Inverter 3600W

Ref Price:
get latest price
Loading Port:
Shenzhen
Payment Terms:
TT or LC
Min Order Qty:
1 Unit pc
Supply Capability:
5000Units/per month pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

What we have, what we can offer

With a R&D team more than 100 engineers,40% of the staff, who has been deeply engaged in the photovoltaic industry for 10 years, CNBM takes the mission to increase the inverter availability and efficiency, putting continuous innovation to make CNBM inverter easier for installation and operation, and more cost-effective for solar plant construction. The full range of CNBM single phase inverters has received VDE, CE, G83/1, G59/2, ENEL2010, VDE4105, C10/C11, AS4777 etc. Maximum efficiency of 97.8% and wide input voltage range, Internal DC switch, MTL-String, Sound control, Bluetooth/RF technology /Wi-FiTransformerless, GT topology.

The range of the Grid Connected Solar Inverter we can offer is from 1.5kw to 20kw.

 

Brief introduction of Grid Connected U.S. Solar Inverter 3600W

Maximum efficiency of 97.5% and wide input voltage range
Integrated DC switch-disconnected
MTL-String
Sound control
Bluetooth/RF technology /Wi-Fi
Transformerless GT topology
5 years warranty (10 years as optional)

 

Specification of Grid Connected U.S. Solar Inverter 3600W

Model

CNBM-3600MTL-US

CNBM-4200MTL-US

CNBM-5000MTL-US

Input data

Max. DC power

3800W

4400W

5200W

Max. DC voltage

600V

600V

600V

Start voltage

150V

150V

150V

PV voltage range

100V-600V

100V-600V

100V-600V

Number of MPP trackers/strings per MPP tracker

2/2

2/2

2/2

Max. input current of the MPP tracker

12A

15A

15A

Output data

Nominal AC output power

3600W

4200W

4600W

Max. output current

18/17.1A/14.8A

21A/20A/17.2A

22A/23.7A/20.5A

AC nominal voltage; range

Default:240V single phase optional:208,240or277 single phase 183-228@208V 211-264V@240V 244-305@277V

AC grid frequency; range

60Hz;59.3-60.5Hz

60Hz;59.3-60.5Hz

60Hz;59.3-60.5Hz

Phase shift (cosφ)

1

1

1

THDI

<3%

<3%

<3%

AC connection

Single phase

Single phase

Single phase

Efficiency

Max. efficiency

98%

98%

98%

CEC efficiency

97%

97%

97%

MPPT efficiency

99.5%

99.5%

99.5%

Protection devices

Output overvoltage protection-varistor

yes

yes

yes

Ground fault monitoring

yes

yes

yes

Grid monitoring

yes

yes

yes

General Data

Dimensions (W / H / D) in mm

360/650/188

360/650/188

360/650/188

Weight

28.3KG

28.3KG

28.3KG

Operating temperature range

-25...+60°C  

-25...+60°C  

-25...+60°C  

Altitude

Up to 2000m(6560ft) without power derating

Relative humidity

95%

Consumption: operating(standby) / night

<5W / < 0.5 W

<5W / < 0.5 W

<5 W / < 0.5 W

Topology

Transformerless

Cooling concept

Natural

Natural

Natural

Enclosure

Type 3R

Type 3R

Type 3R

Features

DC connection:

Screw terminal

Screw terminal

Screw terminal

AC connection:

Screw terminal

Screw terminal

Screw terminal

display

LCD

LCD

LCD

Interfaces: RS485/RS232/Bluetooth/RF/Zigbee

yes/yes/opt/opt/opt

Warranty: 10 years / 15 years

yes /opt

yes /opt

yes /opt

Certificates and approvals

UL1741,UL1998 IEEE 1547, CSA C22.2 No.107.1-1,FCC Part15(Class A&B)

 

Picture 1: Factory of Grid Connected U.S. Solar Inverter 3600W

Grid Connected U.S. Solar Inverter 3600W

 

Picture 2: Installation reference of Grid Connected U.S. Solar Inverter 3600W

Grid Connected U.S. Solar Inverter 3600W

 

Q:What is the role of a power management system in a solar inverter?
The role of a power management system in a solar inverter is to efficiently convert and manage the electricity generated from solar panels. It regulates the flow of power, optimizes energy production, and ensures the safe and reliable operation of the solar inverter system. Additionally, it provides protection against overvoltage, overcurrent, and other electrical faults, maximizing the overall performance and longevity of the system.
Q:What is maximum power point tracking (MPPT) in a solar inverter?
The technique known as maximum power point tracking (MPPT) is employed in solar inverters for the purpose of optimizing the power output of a photovoltaic (PV) system. When solar panels are exposed to sunlight, they generate electricity, but the amount of power they produce can vary depending on factors such as temperature, shading, and the angle at which sunlight strikes them. The maximum power point (MPP) is the specific point at which a solar panel generates the greatest amount of power given the prevailing environmental conditions. However, because these conditions are constantly changing, it is crucial to continuously track the MPP in order to ensure that the solar panels achieve the highest possible power output. Solar inverters equipped with MPPT functionality employ advanced algorithms and electronics to continuously monitor the voltage and current output of the solar panels. By dynamically adjusting the operating voltage and current to align with the MPP, the MPPT inverter ensures that the solar panels operate at their most efficient, regardless of how the environmental conditions may change. When the solar panels are functioning at their MPP, the MPPT inverter extracts the maximum amount of power from the panels and converts it into usable AC power. This optimization leads to increased overall energy generation and maximizes the return on investment for solar power systems. In addition to enhancing efficiency, MPPT also provides other advantages. It can compensate for fluctuations in solar irradiation, temperature, or shading that might impact the power output of the panels. By continually tracking the MPP, the MPPT inverter adjusts the operating parameters to minimize the impact of these factors, ensuring a consistent and optimal power output. In summary, MPPT is a critical feature in solar inverters as it maximizes the power output of a PV system by continuously tracking and adjusting the operating parameters to align with the MPP. This technology enables solar power systems to operate at their highest efficiency, enhance energy generation, and maximize the benefits of utilizing renewable energy sources.
Q:What is the role of a grid-tie inverter in a solar PV system?
The role of a grid-tie inverter in a solar PV system is to convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that can be used to power electrical devices in a home or business. In a solar PV system, the solar panels produce DC electricity when exposed to sunlight. However, most homes and businesses use AC electricity, which is the standard form of electricity provided by utility companies. This is where the grid-tie inverter comes in. The grid-tie inverter takes the DC electricity produced by the solar panels and converts it into AC electricity that is compatible with the electrical grid. It ensures that the electricity generated by the solar panels is synchronized with the utility power and can be seamlessly integrated into the existing electrical system. One of the key functions of a grid-tie inverter is to match the frequency, voltage, and phase of the AC electricity generated by the solar panels with that of the utility power. This synchronization is crucial to ensure a smooth flow of electricity between the solar system and the grid, and to prevent any disruptions or damage to the electrical system. Additionally, a grid-tie inverter also monitors the electrical grid for safety reasons. It constantly checks the grid for any voltage or frequency fluctuations and can automatically disconnect from the grid in the event of a power outage or grid failure. This feature is important to protect the safety of electrical workers who may be repairing the grid during an outage. Furthermore, a grid-tie inverter allows for net metering, which is a billing arrangement where excess electricity generated by the solar system can be fed back into the grid. This means that if the solar system produces more electricity than is being used, the excess energy can be sent back to the grid and the homeowner or business owner can receive credits for the excess energy produced. This can help offset energy costs and potentially result in monetary savings. Overall, the grid-tie inverter plays a vital role in a solar PV system by converting the DC electricity generated by the solar panels into AC electricity that can be used to power electrical devices, ensuring synchronization with the electrical grid, monitoring the grid for safety, and enabling net metering for potential financial benefits.
Q:Can a solar inverter be used in areas with limited roof space or installation options?
Yes, a solar inverter can be used in areas with limited roof space or installation options. Solar inverters are typically compact and can be installed in various locations, such as the ground, walls, or even inside the house. In addition, there are different types of solar inverters available, including microinverters and power optimizers, which allow for more flexibility in system design and installation. These options can help maximize the use of available space and provide more installation options for areas with limited roof space.
Q:What is the warranty period for a solar inverter?
The warranty period for a solar inverter can vary depending on the brand and model. However, it is common for solar inverters to come with a warranty period of 5 to 10 years.
Q:Can a solar inverter be used with a single solar panel?
Yes, a solar inverter can be used with a single solar panel. The purpose of a solar inverter is to convert the direct current (DC) produced by the solar panel into alternating current (AC) that can be used to power electrical devices or be fed into the electrical grid. Even with a single solar panel, the inverter can still perform this function effectively.
Q:What are the key factors affecting the warranty coverage of a solar inverter?
The key factors affecting the warranty coverage of a solar inverter include the length of the warranty period, the brand and reputation of the manufacturer, the quality and durability of the components used in the inverter, and the specific terms and conditions outlined in the warranty agreement. Additionally, factors such as proper installation, maintenance, and usage in accordance with the manufacturer's guidelines can also impact the warranty coverage.
Q:Can a solar inverter be used with a solar air conditioning system?
Yes, a solar inverter can be used with a solar air conditioning system. A solar inverter is responsible for converting the direct current (DC) power generated by solar panels into alternating current (AC) power that can be used to operate electrical appliances. Solar air conditioning systems typically require AC power to function, so a solar inverter would be necessary to convert the DC power from the solar panels into the AC power needed for the air conditioning system.
Q:Can a solar inverter be used in areas with high altitude and low temperature conditions?
Yes, a solar inverter can be used in areas with high altitude and low temperature conditions. However, it is important to choose a solar inverter specifically designed for such conditions, as extreme cold temperatures and high altitudes can affect the performance and efficiency of standard inverters. Specialized inverters that can withstand low temperatures and operate at high altitudes are available in the market to ensure optimal functioning of solar power systems in such environments.
Q:Can a solar inverter be used with different types of grounding systems?
Yes, a solar inverter can be used with different types of grounding systems. Solar inverters are designed to be compatible with various grounding configurations, including both grounded and ungrounded systems. However, it is important to ensure that the specific inverter model is compatible with the desired grounding system to ensure safe and optimal operation.

1. Manufacturer Overview

Location Shenzhen,China
Year Established 2010
Annual Output Value 50 million USD
Main Markets Australia, Euro, America, China.
Company Certifications CE, VDE-AR-N4105, FCC,ETL,CEC,CEI 0-21,G83,G59,SAA,CGC

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port Shenzhen, Guangzhou, Hongkong
Export Percentage 60%
No.of Employees in Trade Department 260
Language Spoken: English, Chinese
b)Factory Information  
Factory Size: 500-1000
No. of Production Lines 8
Contract Manufacturing None
Product Price Range 300-40000 USD

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords