Grid Tied Solar Inverter 3-phase 10000W

Ref Price:
Loading Port:
Shenzhen
Payment Terms:
TT or LC
Min Order Qty:
1 unit pc
Supply Capability:
5000Units/Per month pc/month
  • OKorder Service Pledge
  • Quality Product
  • Order Online Tracking
  • Timely Delivery
  • OKorder Financial Service
  • Credit Rating
  • Credit Services
  • Credit Purchasing

Add to My Favorites

Follow us:

Grid Tied Solar Inverter 3-phase 10000W

CNBM International Corporation (CNBM International) is the most important trading platform of CNBM Group Corporation, a state-owned company under the direct supervision of State-owned Assets Supervision and Administration Commission of the State Council.

With a R&D team more than 100 engineers,40% of the staff, who has been deeply engaged in the photovoltaic industry for 10 years, CNBM takes the mission to increase the inverter availability and efficiency, putting continuous innovation to make CNBM inverter easier for installation and operation, and more cost-effective for solar plant construction. The full range of CNBM single phase inverters has received VDE, CE, G83/1, G59/2, ENEL2010, VDE4105, C10/C11, AS4777 etc.

Maximum efficiency of 97.8% and wide input voltage range, Internal DCswitch,MTL-String, Sound control,Bluetooth/RF technology /WiFiTransformerless,GT topology

The Grid Connected Solar Inverter we can offer is 1.5kw to 20kw.

 

Introduction of Grid Tied Solar Inverter 3-phase 10000W

Maximum efficiency of 97.8% and wide input voltage range
Integrated DC switch-disconnected
MTL-String
Sound control
Bluetooth/RF technology /Wi-Fi
Transformerless GT topology
5 years warranty (10 years as optional)

 

Datasheet of Grid Tied Solar Inverter 3-phase 10000W

Model

10000TL3-US

12000TL3-US

18000TL3-US

20000TL3-US

Input data(DC)

Max. DC Power

10500W

12500W

18750W

20850W

Max. DC voltage

600V

600V

600V

600V

Start voltage

120V

120V

120V

120V

PV voltage range

80V-600V

80V-600V

80V-600V

80V-600V

Max. input current of the MPP tracker A/tracker B

21A/21A

25A/25A

38A/38A

42A/42A

Number of MPP trackers/strings per MPP tracker

2/3

2/3

2/6

2/6

Output data(AC)

Nominal output power

10000W

12000W

18000W

20000W

Nominal AC voltage

480V

480V

480V

480V

AC voltage range

422-528VAC

422-528VAC

422-528VAC

422-528VAC

Nominal AC grid frequency

60 Hz

60 Hz

60 Hz

60 Hz

Max. output currentcos φ=1)

12.0A

14.5A

21.5A

24A

Power factor(cos φ)

>0.99        
(0.9 Leading to 0.9 Lagging)

>0.99        
(0.9 Leading to 0.9 Lagging)

>0.99        
(0.9 Leading to 0.9 Lagging)

>0.99        
(0.9 Leading to 0.9 Lagging)

Harmonics

<3%

<3%

<3%

<3%

Grid connection type

3/N/E

3/N/E

3/N/E

3/N/E

Efficiency

Max. efficiency

97%

97%

97.5%

97.5%

CEC-Weighted efficiency

95.5%

95.5%

96%

96.5%

MPPT efficiency

99.5%

99.5%

99.5%

99.5%

Protection devices

Input over voltage protection -DIN rail surge arrester(Option)

Class II

Class II

Class II

Class II

DC insulation measure

yes

yes

yes

yes

AC short circuit protection

yes

yes

yes

yes

Output over voltage protection -Varistor

yes

yes

yes

yes

Output over voltage protection -DIN rail surge arrester(Option)

Class II

Class II

Class II

Class II

String fuse type/size(Option)

15A/600VDC 10*38mm

15A/600VDC 10*38mm

15A/600VDC 10*38mm

15A/600VDC 10*38mm

General Data

Dimensions(W*H*D) in mm

530*705*247

530*705*247

650*740*247

650*740*247

Weight

46kg/101.5lb

46kg/101.5lb

63kg/138.9lb

63kg/138.9lb

Operating ambient temperature range

–25°C ... +60°C

–25°C ... +60°C

–25°C ... +60°C

–25°C ... +60°C

Altitude

≤2000m/6560ft

Self Consumption night

< 3 W

< 3 W

< 3 W

< 3 W

Topology

Transformerless

Cooling concept

Fan Cool

Fan Cool

Fan Cool

 Fan Cool

Electronics protection rating /connection area

NEMA 3R

NEMA 3R

NEMA 3R

NEMA 3R

Features

Display

Graphic

Graphic

Graphic

Graphic

Interface:RS232/RS485/ Bluetooth/RF/Zigbee/Wifi

yes/yes/opt/opt /opt/opt

Warranty:10 years /15 years

yes/opt

yes/opt

yes/opt

yes/opt

Certificates and approvals

UL1741,UL1998,IEEE1547,FCC part 15(class B),CSA C22.2 No.107.1

 

Picure1: Factory of Grid Tied Solar Inverter 3-phase 10000W

Grid Tied Solar Inverter 3-phase 10000W

 

Picture 2: Package of Grid Tied Solar Inverter 3-phase 10000W

Grid Tied Solar Inverter 3-phase 10000W

 

Q:
Yes, a solar inverter can be used for off-grid systems. In fact, it is an essential component of off-grid solar systems as it converts the DC power generated by solar panels into AC power that can be used to run appliances and devices. The solar inverter also manages the charging and discharging of batteries in off-grid systems, ensuring a stable and reliable power supply even when the sun is not shining.
Q:
The role of a power factor correction circuit in a solar inverter is to improve the power factor of the inverter, ensuring that the power drawn from the grid is used efficiently. By reducing the reactive power and bringing it closer to the real power, the power factor correction circuit helps minimize energy losses and optimize the overall performance of the solar inverter.
Q:
A solar inverter interacts with a battery storage system by converting the direct current (DC) electricity produced by solar panels into alternating current (AC) electricity, which is then used to charge the batteries. The inverter also ensures that the power from the batteries can be used to supply electricity to the loads when there is no sunlight or during a power outage. Additionally, the inverter manages the flow of electricity between the solar panels, battery, and the electrical grid, optimizing the system's overall efficiency.
Q:
The role of a power optimizer in a solar inverter is to maximize the energy output of each individual solar panel by constantly monitoring and optimizing its performance. It ensures that each panel operates at its maximum power point, regardless of shading, dirt, or other factors that may affect the overall system performance. By individually optimizing each panel, a power optimizer can significantly increase the overall energy production of a solar system.
Q:
The role of a solar inverter in a grid-tied system is to convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that is compatible with the electrical grid. It also ensures the synchronization and stability of the solar power system with the grid, allowing excess energy to be fed back into the grid and enabling the system to draw power from the grid when needed.
Q:
Yes, a solar inverter can be used in areas with high levels of electrical noise or interference. However, it is important to ensure that the solar inverter is designed and equipped to handle such conditions. Some modern solar inverters have built-in features and technologies that help mitigate electrical noise and interference. These features may include advanced filtering, shielding, and surge protection mechanisms. Additionally, proper grounding and installation practices can also help reduce the impact of electrical noise and interference on the performance of the solar inverter. It is advisable to consult with a professional or the manufacturer of the solar inverter to ensure compatibility and optimal performance in high-noise environments.
Q:
A solar inverter typically handles variations in battery charge levels by constantly monitoring the charge level of the battery. It adjusts the energy flow from the solar panels to the battery based on its charge level. When the battery charge is low, the inverter increases the energy flow from the solar panels to charge the battery. Conversely, when the battery charge is high, the inverter reduces the energy flow to prevent overcharging. This dynamic control ensures efficient use of the available solar energy and optimal charging of the battery.
Q:
A solar inverter protects against overvoltage by monitoring the voltage levels of the solar panels. When the voltage exceeds the safe operating range, the inverter automatically reduces the power output or completely shuts down to prevent any damage to the electrical system. Additionally, some inverters are equipped with surge protection devices to further safeguard against sudden voltage spikes.
Q:
A solar inverter handles voltage phase imbalance in the grid by continuously monitoring the grid voltage and adjusting its internal control algorithms accordingly. This allows the inverter to dynamically balance the output between the phases, compensating for any phase imbalances in the grid. By doing so, the solar inverter ensures that the electricity it generates and feeds into the grid is well synchronized with the grid's voltage and phase, minimizing any adverse effects of phase imbalance.
Q:
Solar inverters are highly efficient, with most modern models achieving efficiency levels of 95% or higher. This means that they can convert a significant amount of the DC power generated by solar panels into usable AC power for homes and businesses, minimizing energy losses and maximizing the overall efficiency of the solar system.

1. Manufacturer Overview

Location Shenzhen,China
Year Established 2010
Annual Output Value 50 million USD
Main Markets Australia, Euro, America, China.
Company Certifications CE, VDE-AR-N4105, FCC,ETL,CEC,CEI 0-21,G83,G59,SAA,CGC

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port Shenzhen, Guangzhou, Hongkong
Export Percentage 60%
No.of Employees in Trade Department 260
Language Spoken: English, Chinese
b)Factory Information  
Factory Size: 500-1000
No. of Production Lines 8
Contract Manufacturing None
Product Price Range 300-40000 USD

Send your message to us

This is not what you are looking for? Post Buying Request