• On Grid Solar Inverter GW500K-MTL System 1
  • On Grid Solar Inverter GW500K-MTL System 2
  • On Grid Solar Inverter GW500K-MTL System 3
  • On Grid Solar Inverter GW500K-MTL System 4
  • On Grid Solar Inverter GW500K-MTL System 5
On Grid Solar Inverter GW500K-MTL

On Grid Solar Inverter GW500K-MTL

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
10 unit
Supply Capability:
100 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description:

 

CNBM Solar  is a world-leading and Vertical integrated manufacturer of high-performance with Silicon,

Wafer, Cells, Modules, which convert sunlight into electricity for residential, commercial, and utility-scale

power generation.

        

The capacity of CNBMSolar  is reach to 1GW, and make sure each year our shipment capacity is more

Than 700-800MWs, at the same time, we have set up the largest solar power station with our partner

in Ukraine.

       

CNBM is a Quality + Service oriented company with“Excellence at Each Step” approach, composed of

the finest components from TUV and IEC-certified partners around the world, CNBM modules consistently

undergo a variety of trials at the company’s Test & Development Centre, ensuring peak performance

capabilities. The company is committed to develop and provide the world with clean and renewable energy

to ease the energy shortages as well as human kind’s impact on the environment.

 

Feature and data

GoodWe central GW500K-MTL solar inverter is widely used in large-scale solar power plants. As core equipment in solar power station, its stability and reliability play an important role in long-term investment returns. GW500K-MTL solar inverter adopts industrial design philosophy as well as proven inverter control technology, which ensures its 25 years life time. In terms of solar plants grid integration, GoodWe solar inverter is also equipped with output power liner control, SVG reactive power compensation technology, LVRT capability and other advanced technologies which are apt to grid integration and management. In addition, its lower THDi output and higher conversion efficiency provide stronger support to green and efficient power plants operation.

DC Input DataMax. PV-generator power [KW]550
Max. DC voltage [V]1000

Max. DC current [A]

1200
MPPT voltage range [V]450~820
Max. input numbers10
Nighttime self-energy consumption [W]<100< td="">
AC Output DataNominal output power [KW]500
Nominal output voltage(Line Voltage) [V]270
Grid voltage range(Line Voltage) [V]310~450(Equipped with 270/400 tranformer)
Rated output current [A]1070
Max. output current [A]1177
Nominal grid frequency [Hz]50/60
Grid frequency range [Hz]47.5~52.5/57~63
THDi<1%< td="">
EfficiencyMax. efficiency98.8%
European efficiency98.6%
MPPT adaptation efficiency>99.5%
Gerenal DataDimensions (WxHxD) [mm]2610*2165*800
Net weight [kg]2100
HousingIndoor
Operating temperature range-25~55℃
Relative humidity0 ~ 95%
IP Protection classIP20
TopologyTransformer electric isolation
CoolingForced air-cooling
CommunicationRS485(Ethernet/GPRS Optional)
Display7"LCD Touch Screen
Standard Warranty [years]2 (Extention optional)

 On Grid Solar Inverter GW500K-MTL

FAQ:Pls introduce more about CNBM

CNBM is a China government leading company ,one of Fortune 500

Q:What is the role of a solar inverter in reactive power compensation during grid disturbances?
The role of a solar inverter in reactive power compensation during grid disturbances is to regulate and manage the reactive power flow between the solar panel system and the grid. During grid disturbances, such as voltage fluctuations or power factor variations, the solar inverter helps maintain a stable and balanced flow of reactive power, ensuring efficient and reliable operation of the solar panel system while minimizing the impact on the grid.
Q:How does a solar inverter handle power factor correction?
A solar inverter handles power factor correction by converting the DC power generated by solar panels into AC power that is synchronized with the utility grid. It adjusts the phase and magnitude of the AC output to match the power factor requirements of the grid, ensuring efficient power transfer and reducing reactive power.
Q:How does a solar inverter handle power quality disturbances?
A solar inverter handles power quality disturbances by continuously monitoring the electrical grid and adjusting its output accordingly. It employs various techniques such as voltage regulation, frequency control, and power factor correction to ensure that the power it feeds into the grid is of high quality and meets the required standards. Additionally, some advanced solar inverters also have built-in features like anti-islanding protection to prevent the injection of power into the grid during a disturbance, ensuring the safety of both the solar system and the grid.
Q:How does a solar inverter handle variations in temperature?
A solar inverter handles variations in temperature by employing temperature compensation techniques. It continuously monitors the temperature of the solar panels and adjusts its output voltage and frequency accordingly. This helps maintain optimal performance and efficiency, as temperature changes can affect the electrical characteristics of the panels. Additionally, inverters may have built-in cooling systems or heat sinks to dissipate excess heat and prevent any damage caused by high temperatures.
Q:How does a solar inverter synchronize with the electrical grid?
A solar inverter synchronizes with the electrical grid by constantly monitoring the voltage and frequency of the grid. It adjusts its own output voltage and frequency to match the grid's, ensuring that the electricity generated by the solar panels is in phase and synchronized with the grid. This synchronization allows the solar power to be seamlessly integrated into the grid, enabling efficient power transfer and preventing any disruption to the supply.
Q:Can a solar inverter be used with a solar-powered water purification system?
Yes, a solar inverter can be used with a solar-powered water purification system. A solar inverter is responsible for converting the direct current (DC) electricity produced by solar panels into alternating current (AC) electricity that can be used to power various appliances and systems. In the case of a solar-powered water purification system, the solar inverter would be essential in converting the DC electricity generated by the solar panels into the appropriate AC power required to operate the system's pumps, filters, and other components.
Q:How does MPPT technology work in solar inverters?
MPPT (Maximum Power Point Tracking) technology in solar inverters works by continuously adjusting the operating voltage and current of the solar panels to ensure the maximum power output. It does this by constantly monitoring the voltage and current of the solar panels and finding the optimal point (maximum power point) at which the panels can deliver the most power. This is achieved by varying the load on the panels to match their impedance with the maximum power point. MPPT technology maximizes the efficiency of solar power generation by extracting the maximum available power from the panels under varying environmental conditions such as shading, temperature changes, and panel degradation.
Q:What is the role of a solar inverter in a solar-powered remote monitoring system?
The role of a solar inverter in a solar-powered remote monitoring system is to convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that can be used to power the monitoring system. It also ensures that the electricity generated matches the requirements of the monitoring equipment, regulates the voltage, and assists in efficient power transmission and distribution.
Q:How does a solar inverter handle variations in solar panel degradation over time?
A solar inverter handles variations in solar panel degradation over time by continuously monitoring the performance of the solar panels. It adjusts the power output and voltage levels accordingly to optimize the energy conversion process. This adaptive capability allows the inverter to compensate for any decrease in efficiency caused by degradation, ensuring maximum power generation from the solar panels throughout their lifespan.
Q:How does a solar inverter handle voltage phase imbalance in the grid?
A solar inverter handles voltage phase imbalance in the grid by monitoring the phase angles of the grid voltage and adjusting its output accordingly. It continuously measures the phase imbalance and corrects it by injecting reactive power into the grid. This helps to balance the voltage across the different phases and maintain stable grid conditions.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords