• Schuco Solar Inverter 1500w Solar Grid Tie Inverter Transformerless 1.5kw String Inverter ETL/FCA System 1
  • Schuco Solar Inverter 1500w Solar Grid Tie Inverter Transformerless 1.5kw String Inverter ETL/FCA System 2
  • Schuco Solar Inverter 1500w Solar Grid Tie Inverter Transformerless 1.5kw String Inverter ETL/FCA System 3
  • Schuco Solar Inverter 1500w Solar Grid Tie Inverter Transformerless 1.5kw String Inverter ETL/FCA System 4
  • Schuco Solar Inverter 1500w Solar Grid Tie Inverter Transformerless 1.5kw String Inverter ETL/FCA System 5
Schuco Solar Inverter 1500w Solar Grid Tie Inverter Transformerless 1.5kw String Inverter ETL/FCA

Schuco Solar Inverter 1500w Solar Grid Tie Inverter Transformerless 1.5kw String Inverter ETL/FCA

Ref Price:
$370.00 - 556.00 / pc get latest price
Loading Port:
Shekou
Payment Terms:
TT or LC
Min Order Qty:
10 pc
Supply Capability:
100000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1500w solar grid tie inverter transformerless 1.5kw string inverter ETL/FCA

Solar inverter 1500TL-3000TL-US

Maximum efficiency of 97.5% and wide input voltage range

Internal DC Switch

Transformerless GT topology

Compact design

Bluetooth/ RF technology/ Zigbee/ Wi-Fi

Sound control

Easy installation


 

General Descriptions

 Leading-Edge Technology, CE,TUV ,VDE , SAA,DK5940 Certicificates.

> Maximum efficiency of 97.8 % and wide input voltage range

> Internal DC STWTICH

> Transformerless H6 topology

> Compact Design

> MPPT control

> MTL-String

> RS485 RS432 bluetooth Technology

> Comprehensive Growatt warranty program

> Easy country configuration, easy installation

> Multi-language display

 

Communications
> RS485 /GPRS interfaces
> Computer monitoring software


1500w solar grid tie inverter transformerless 1.5kw string inverter ETL/FCA


1500-US

2000-US

3000-US

Inputdata   

Max.DCpower

1800W

2300W

3200W

Max. DC  voltage

450V

500V

500V

Start  Voltage

150V

150V

150V

PV voltage  range

100V-450V

100V-500V

100V-500V

MPP voltage  range(full load)

120V-400V

120V-450V

120V-450V

Max. input  current of per MPP tracker

12A

14A

17A

Number of  independent MPP
 trackers/strings per MPP tracker

1/1

1/2

1/2

 

Rated AC  output power

1500W@208Vac
 1650W@240&277V

1800W@208Vac
 2000W@240&277Vac

2500W@208Vac
 2800W@240&277Vac

        AC nominal voltage; range

Default:240V  single phase, optional:208 single  phase;183-228@208V,211-264V@240V                

Max. output  current

8A/7.8A

9.7A/9.4A

15A/14.2A

AC grid  frequency; range

60Hz;  59.3-60.5Hz

60Hz;  59.3-60.5Hz

60Hz;  59.3-60.5Hz

Power  factor

1

1

1

THDI

<3%

<3%

<3%

Grid  connection type

Single  phase

Single  phase

Single  phase

 

Efficiency   

Max.efficiency
 Euro-eta
 MPPT efficiency

97%
96%
99.5%

97%
96.5%
99.5%

97%
96.5%
99.5%

 

Protection Devices   

DC reverse  polarity protection

yes

yes

yes

DC switch  rating for each MPPT

yes

yes

yes

Output over  current protection

yes

yes

yes

Output over  voltage
 protection-varistor

yes

yes

yes

Ground  fault monitoring

yes

yes

yes

Grid  monitoring

yes

yes

yes

Integrated  all-pole sensitive
 leakage current monitoring unit

yes

yes

yes

 

Generaldata   

Dimensions(W/H/D)  in mm
 Weight
 Operating temperature range
 Noise emission(typical)
 Self-Consumption (night)
 Topology
 Cooling concept
 Environmental Protection rating
 Altitude
 Humidity

360/465/165
 14.6KG
 -25℃ ... +60℃
 ≤25dB(A)
 <0.5W
 Transformerless
 Natural
 Type 3R
 2000m without derating
 0~100%

360/465/165

15.1KG
 -25℃ ... +60℃
 ≤25dB(A)
 <0.5W
 Transformerless
 Natural
 Type 3R
 2000m without derating
 0~100%

360/465/165
 15.9KG
 -25℃ ... +60℃
 ≤25dB(A)
 <0.5W
 Transformerless
 Natural
 Type 3R
 2000m without derating
 0~100%

 

Features   

DC  connection

AC  connection

Display
 Interfaces: RS232/RS485/
 Ethernet/RF/WiFi
 Warranty: 10years/15years

Screw  terminal

Screw  terminal

LCD
yes/yes/

opt/opt/opt
yes/opt

Screw  terminal

Screw  terminal

LCD

yes/yes/

opt/opt/opt
yes/opt

Screw  terminal

Screw  terminal

LCD

yes/yes/

opt/opt/opt

yes/opt

 

Certificates and Approvals   UL1741, UL1998,  IEEE 1547, CSA C22.2    No.107.1-1, FCC Part15(Class A&B)

 


FAQ

1. Have any design tool and how to use it?

Shine Design is the system design software just for inverters, It can conduct installers to figure out panel numbers for a system, panel numbers for each string, and which inverter model is suitable for the system. Moreover, it can print a design report after input all necessary parameters, can calculate DC/AC wire wastage, annual generation, etc.

2. Does the inverter have monitoring solutions for residential system?

For small rating system, we have wired two monitoring solution (ShineNet via RS232 or RS485). (a) Local wireless monitoring solution (ShineVision via RF module communication) (b) Global wireless monitoring solution (WIFI module via WIFI network)

3. Do you have free solution for monitoring?

ShineNet is an inverter monitoring software run in Windows XP, Windows Vista, Windows 7 operating system. It can monitor inverter via RS232 (or RS232 convert to USB cable) and RS485 wire connection. Customers can purchase the cable locally to get the inverter monitored, it is simple.

Q:Can a solar inverter be used in systems with different module voltages?
Yes, a solar inverter can be used in systems with different module voltages. Solar inverters are designed to convert the direct current (DC) generated by solar panels into alternating current (AC) that can be used in the electrical grid or for powering appliances. They are equipped with maximum power point tracking (MPPT) technology, which allows them to adjust and optimize the voltage and current output to match the specific voltage requirements of the solar panels. This flexibility enables solar inverters to work efficiently with various module voltages, making them compatible with different solar system configurations.
Q:What is the role of a solar inverter in voltage control?
The role of a solar inverter in voltage control is to convert the direct current (DC) produced by solar panels into alternating current (AC) that is suitable for use in homes and businesses. Additionally, a solar inverter helps regulate and stabilize the voltage levels to ensure that the generated electricity matches the required voltage for the connected electrical appliances. This helps prevent overvoltage or undervoltage situations, ensuring a safe and efficient energy supply.
Q:What is the maximum number of parallel inverters that can be installed in a solar system?
The maximum number of parallel inverters that can be installed in a solar system depends on the specific requirements of the system and the available infrastructure. There is no fixed limit, as it varies based on factors such as the size of the system, the capacity of the inverters, the electrical load, and the design limitations. It is best to consult with a solar system designer or engineer to determine the optimal number of parallel inverters for a particular solar installation.
Q:What is the impact of temperature on the performance of a solar inverter?
Temperature has a significant impact on the performance of a solar inverter. As temperature increases, the efficiency of the inverter tends to decrease. This is primarily due to the fact that high temperatures can lead to increased resistive losses within the inverter's components, resulting in reduced overall efficiency. Additionally, excessive heat can cause the inverter to experience thermal stress, leading to potential malfunctions or even failures. Therefore, it is crucial to consider temperature management and cooling measures to optimize the performance and lifespan of a solar inverter.
Q:Can a solar inverter be used with a solar-powered outdoor lighting system?
Yes, a solar inverter can be used with a solar-powered outdoor lighting system. A solar inverter is responsible for converting the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power various devices, including outdoor lighting systems. By connecting the solar panels to a solar inverter, the generated energy can be efficiently transformed and utilized for powering the lighting system, ensuring sustainable and renewable lighting solutions.
Q:How does a solar inverter handle electromagnetic interference (EMI)?
A solar inverter typically handles electromagnetic interference (EMI) by incorporating various measures and technologies to minimize its impact. This includes using shielding materials and techniques to prevent EMI from affecting the internal electronics of the inverter. Additionally, filters and surge suppressors are employed to reduce EMI generated by the inverter from interfering with other electronic devices. Overall, the solar inverter aims to mitigate EMI issues to ensure optimal performance and minimize disruptions.
Q:How does the temperature affect the performance of a solar inverter?
The temperature affects the performance of a solar inverter by influencing its efficiency and power output. Higher temperatures can cause the inverter to operate less efficiently, resulting in a decrease in its overall performance. This is because the semiconductor components in the inverter may experience increased resistance, leading to more power losses and reduced conversion efficiency. Additionally, excessive heat can also lead to thermal stress and component degradation, potentially impacting the long-term reliability and lifespan of the inverter.
Q:How does a solar inverter affect the overall system cost?
A solar inverter can have a significant impact on the overall system cost. While it is a crucial component that converts DC power generated by solar panels into AC power for use in homes or businesses, it also adds to the total expenses of installing a solar system. The cost of a solar inverter depends on factors such as its capacity, efficiency, and features. Higher capacity or more advanced inverters tend to be more expensive. However, investing in a high-quality inverter can improve the overall efficiency and performance of the solar system, potentially offsetting the additional cost in the long run.
Q:What is the role of a grid connection feature in a solar inverter?
The role of a grid connection feature in a solar inverter is to facilitate the transfer of electricity between the solar panels and the electrical grid. It allows for the seamless integration of solar power into the existing electrical infrastructure, enabling excess electricity generated by the solar panels to be fed back into the grid, and drawing power from the grid when the solar panels are not producing enough electricity. This grid connection feature also ensures that the solar system meets the safety and regulatory requirements of the local electrical grid.
Q:Can a solar inverter be used with different types of electrical appliances?
Yes, a solar inverter can be used with different types of electrical appliances as long as the appliances are compatible with the inverter's power output. The inverter converts the direct current (DC) generated by the solar panels into alternating current (AC), which can be used to power various electrical devices. However, it is important to ensure that the inverter's capacity and voltage output are suitable for the specific appliances to avoid damage or malfunction.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords