• Grid Tie PV Inverters  2700TL 2.7kw DC to AC Solar Inverter System 1
  • Grid Tie PV Inverters  2700TL 2.7kw DC to AC Solar Inverter System 2
  • Grid Tie PV Inverters  2700TL 2.7kw DC to AC Solar Inverter System 3
Grid Tie PV Inverters  2700TL 2.7kw DC to AC Solar Inverter

Grid Tie PV Inverters 2700TL 2.7kw DC to AC Solar Inverter

Ref Price:
get latest price
Loading Port:
Shekou
Payment Terms:
TT or LC
Min Order Qty:
10 unit
Supply Capability:
99999 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Grid Tie PV Inverters  2700TL 2.7kw DC to AC Solar Inverter

 

Solar inverter Datasheet

 

Technical Data

SOFAR

1100TL

SOFAR

1600TL

SOFAR

2200TL

SOFAR

2700TL

SOFAR

3000TL

Input (DC)

Max. Input Power

1100W

1600W

2200W

2700W

3000W

No. of MPPT / String per MPPT

1/1

Max. Input voltage

450V

450V

500V

500V

500V

Max. Input Voltage

80V

Rated input voltage

360V

Operating input voltage range

90V-400V

100V-480V

MPPT voltage range

110V-380V

165V-380V

170-450V

210-450V

230V-450V

Max. Input current per MPPT

10A

13A

Input short circuit current per MPPT

12A

15A

Output(AC)

Rated power(@230V,50Hz)

1000VA

1500VA

2000VA

2500VA

2800VA

Max. AC power

1000VA

1500VA

2000VA

2500VA

2800VA

Max. AC Output Current

4.5A

7A

9.5A

11.5A

13A

Rated Grid Voltage

230V

Nominal Grid Voltage Range

180V-270V(According to local standard)

Rated Frequency

50Hz / 60Hz

Grid frequency Range

44~55 / 54~66Hz(According to local  standard)

THDi

<3%

Power factor Adjustable Range

0.8 over excited … 0.8 under excited

Grid connection

Single phase

Efficiency

Max. efficiency

97%

97.1%

Weighted eff.(EU/CEC)

96%

96.2%

96.3%

MPPT efficiency

>99.5%

Standard

EMC

EN 61000-6-1, EN 61000-6-2, EN 61000-6-3,  EN 61000-6-4

RSSR

IEC 62109-1, IEC 62109-2

Grid Standards

AS4777, VDE4105, C10-C11, G83/G59 (more  available on request)

Protection

Anti-Islanding Protection

Yes

DC reverse polarity protection

Yes

Over Temp Protection

Yes

Leakage Current Protection

Yes

Over Voltage Protection

Yes

Over Current Protection

Yes

Earth Fault Protection

Yes

Communication

Standard Communication Mode

Wifi+RS485

Operation Data Storage

25 years

Relay

Yes

I/O

Yes

General data

DC Switch

optional

Ambient temperature range

-25℃ ~ +60℃

Topology

Transformerless

Cooling

Nature

Allowable relative humidity range

0 ~ 95% no condensing

Max. Operating Altitude

2000m

Noise

<35dB @1m

Degree of Protection

(per IEC 60529)

IP65

Dimension

400*310*130mm

Weight

11kg

12kg

Self-consumption at night

0

Display

Graphic display

Warranty

5 years

 

Inverter Advantages Introduction:

 

High-yield

Max 97.1%efficiency

Real timeprecise MPPT algorithm for max harvest

Wide inputvoltage operation range from 90V to 500V

 

2.7kw DC to AC Solar Inverter

Flexible and economicalsystem solution

Free siteselection due to IP65

Easy installationand maintenance due to “Plug & Play” connection

Interfaceselection-Wi-Fi/ RS485 / Dry Relay for more flexible

configurationandsystem monitoring

4” LCDdisplay

 

2.7kw DC to AC Solar Inverter Low maintenance cost

Rust-freealuminumcovers

Flexiblemonitoring solution

Multifunctionrelay can be configured to show various inverter information

 

Intelligent gridmanagement

Reactivepowercapability

Self powerreduce when over frequency

Remoteactive/reactivepower limit control

 

Packing information:


 

 

Q:What is the difference between low voltage grid connection and medium voltage grid connection?
The difference is that the current at low voltage and the grid is large, the current is small when the voltage is small, followed by the low voltage crossing parameter setting problem (such as PV inverter integrated with inverter and low voltage crossing function, not all photovoltaic inverter
Q:What are the main components of a solar inverter system?
Solar inverter systems consist of several key components, namely solar panels, the inverter itself, and various electrical elements. The primary component of a solar inverter system is the solar panel. These panels are composed of photovoltaic cells that transform sunlight into direct current (DC) electricity. To maximize exposure to sunlight, they are typically installed on rooftops or in open areas. Another crucial component is the inverter, which plays a vital role in converting the DC electricity produced by the solar panels into alternating current (AC) electricity, the type commonly used in homes and businesses. Inverters also regulate the electricity flow, ensuring it aligns with the voltage and frequency of the utility grid. In addition to the solar panels and inverter, other electrical components are present in a solar inverter system. These include wiring, switches, fuses, and circuit breakers, which facilitate the connection of the solar panels, inverter, and other equipment to the electrical grid. Monitoring systems and data loggers are often included as well, providing valuable information on energy production and system performance. Lastly, a solar inverter system may incorporate a battery storage system. This allows surplus electricity generated by the solar panels to be stored for later use, such as during periods of low sunlight or power outages. Battery storage systems are gaining popularity as they offer greater energy independence and the ability to utilize solar energy even when sunlight is scarce. In summary, the main constituents of a solar inverter system encompass solar panels, the inverter, electrical elements, and potentially a battery storage system. Each component has a crucial role in harnessing solar energy and converting it into usable electricity for residential and commercial purposes.
Q:Can a solar inverter be used in systems with multiple inverters?
Yes, a solar inverter can be used in systems with multiple inverters. In fact, in large-scale solar installations, multiple inverters are often used to handle the increased power output. These inverters are connected in parallel or series to ensure efficient and reliable operation of the entire system.
Q:What is the role of ground fault protection in a solar inverter?
The role of ground fault protection in a solar inverter is to safeguard against electrical faults that occur when an unintended ground connection is made in the system. It detects any leakage of current to the ground and quickly disconnects the circuit to prevent the risk of electric shock or damage to the equipment. Ground fault protection ensures the safety and reliability of the solar inverter, as well as the overall solar power system.
Q:Can a solar inverter be used with a string inverter system?
No, a solar inverter and a string inverter system are two different types of inverters used in solar power systems. They cannot be used interchangeably as they have different functionalities and are designed for different types of solar installations.
Q:How does a solar inverter protect against voltage fluctuations?
A solar inverter protects against voltage fluctuations by continuously monitoring the voltage levels from the solar panels. It adjusts the voltage to match the grid voltage, ensuring a stable and consistent flow of electricity. Additionally, it employs various protective mechanisms such as overvoltage or undervoltage protection, surge protection, and fault detection to safeguard the system from voltage fluctuations and potential damage.
Q:What is the role of a maximum power control feature in a solar inverter?
The role of a maximum power control feature in a solar inverter is to optimize the energy output of the solar panels by constantly tracking and adjusting the operating point to ensure that the system operates at its maximum power point (MPP). This feature helps to increase the overall efficiency of the solar system and maximize the amount of energy that can be harvested from the sun.
Q:Are there any disadvantages of using a solar inverter?
Yes, there are some disadvantages of using a solar inverter. One major disadvantage is the initial cost of purchasing and installing the inverter, which can be relatively high. Additionally, solar inverters are susceptible to damage from power surges or lightning strikes, which can result in costly repairs. Furthermore, solar inverters require regular maintenance to ensure optimal performance, which can add to the overall cost. Lastly, solar inverters can produce a humming noise during operation, which may be a nuisance in certain environments.
Q:What is the role of a solar inverter in a community solar project?
The role of a solar inverter in a community solar project is to convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that can be used to power homes and businesses. It also ensures that the electricity is synchronized with the utility grid and optimizes the efficiency of the solar power system.
Q:Can a solar inverter convert DC power to AC power during a power outage?
No, a solar inverter cannot convert DC power to AC power during a power outage. During a power outage, the solar inverter relies on the grid to function, and without grid power, it cannot convert DC power from the solar panels into usable AC power.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords