• Solar Inverter Charger Controller CNBM-1500TL Grid Tied Solar Inverter System 1
  • Solar Inverter Charger Controller CNBM-1500TL Grid Tied Solar Inverter System 2
  • Solar Inverter Charger Controller CNBM-1500TL Grid Tied Solar Inverter System 3
Solar Inverter Charger Controller CNBM-1500TL Grid Tied Solar Inverter

Solar Inverter Charger Controller CNBM-1500TL Grid Tied Solar Inverter

Ref Price:
get latest price
Loading Port:
SHENZHEN
Payment Terms:
TT or LC
Min Order Qty:
1set set
Supply Capability:
5000 per month set/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Features of Grid Tied Solar Inverter CNBM-1500TL

With a R&D team more than 100 engineers,40% of the staff, who has been deeply engaged in the photovoltaic industry for 10 years, CNBM takes the mission to increase the inverter availability and efficiency, putting continuous innovation to make CNBM inverter easier for installation and operation, and more cost-effective for solar plant construction. The full range of CNBM single phase inverters has received VDE, CE, G83/1, G59/2, ENEL2010, VDE4105, C10/C11, AS4777 etc.

Maximum efficiency of 97.8% and wide input voltage range, Internal DCswitch,MTL-String, Sound control,Bluetooth/RF technology /Wi-FiTransformerless,GT topology 

Technical data of Grid Tied Solar Inverter CNBM-1500TL

Model

CNBM-1000TL

CNBM-1500TL

Input data (DC)

 

 

Max. DC power

1300W

1800W

Max. DC voltage

450V

450V

Start voltage

90V

150V

PV voltage range

70V-450V

100V-450V

Max. input current

10A

10A

Number of MPP trackers /strings per MPP tracker

1/1

1/1

Output (AC)

 

Rated AC output power

1000W

1600W

Max. AC power

1100W

1650W

Max. output current

5.5A

8A

Power factor

1

1

THDI

<3%

<3%

AC connection

Single phase

Single phase

Efficiency

 

Max. efficiency

97%

97%

Euro weighted efficiency

96.50%

96.50%

MPPT efficiency

99.50%

99.50%

Protection devices

 

Output over voltage protection-varistor

yes

yes

Ground fault monitoring

yes

yes

Grid monitoring

yes

yes

General Data

 

Dimensions (W / H / D) in mm

360/329/132

360/329/132

Weight

11.5KG

11.5KG

Operating temperature range

–25°C ... +60°C

–25°C ... +60°C

Altitude

2000m(6560ft) without derating

Self-Consumption night

< 0.5 W

< 0.5 W

Topology

Transformerless

Cooling concept

Natural

Natural

Environmental Protection Rating

IP65

IP65

Features

 

DC connection

H4/MC4(opt)

H4/MC4(opt)

Display

LCD

LCD

Interfaces: RS485/RS232/Bluetooth / RF/Zigbee/Wifi

yes/yes/opt/opt/opt

Warranty: 5 years / 10 years

yes /opt

Certificates and approvals

CEVDE 0126-1-1DK5940G83/1-1G59/2RD1663EN50438

VDE-AR-N4105CEI-021IEC-62109ENEL-Guide

CNBM-1500TL is simple national setting of line supply monitoring, Easy country configuration, with Multi-language,display, currently available for most of the countries over the world.With technical creativity and scientific management, the factory established first class R&D and test centers, as well as management and R&D teams comprising of PhDs and masters with overseas qualification.

Figure 1 the application of Grid Tied Solar Inverter CNBM-1500TL

Grid Tied Solar inverter CNBM-1500TL

 

Figure 2 the application of Grid Tied Solar Inverter CNBM-1500TL

Grid Tied Solar Inverter CNBM-1500TL

 

Q: What is the role of a solar inverter in maximizing solar panel output?
The role of a solar inverter in maximizing solar panel output is to convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that can be used in our homes and businesses. Additionally, the inverter ensures that the solar panels operate at their maximum power point, optimizing their efficiency and output. It also monitors and controls the flow of electricity, ensuring safety and preventing any damage to the solar panels or the electrical system.
Q: Can a solar inverter convert DC power to AC power during a power outage?
No, a solar inverter cannot convert DC power to AC power during a power outage. During a power outage, the solar inverter relies on the grid to function, and without grid power, it cannot convert DC power from the solar panels into usable AC power.
Q: How does a grid-tied solar inverter work?
A grid-tied solar inverter works by converting the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that can be used to power household appliances and be fed back into the electrical grid. It synchronizes the frequency and voltage of the solar-generated AC electricity with that of the grid, allowing seamless integration and transfer of power. This inverter also ensures safety by monitoring the grid connection and automatically disconnecting the solar system from the grid during power outages or maintenance work. Overall, it enables efficient utilization of solar energy and allows homeowners to reduce their reliance on fossil fuels while potentially earning credits for excess electricity generated.
Q: What is the role of a solar inverter in a net metering system?
The role of a solar inverter in a net metering system is to convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity, which is compatible with the electrical grid. The inverter also synchronizes the solar system with the grid, ensuring that excess electricity generated by the solar panels is fed back into the grid, allowing for net metering and the possibility of earning credits for the surplus energy generated.
Q: What is the maximum number of solar panels that a solar inverter can support?
The maximum number of solar panels that a solar inverter can support depends on the capacity and specifications of the specific inverter model. There is no universal limit, as different inverters have different capabilities, but typically, a solar inverter can support anywhere from a few panels to several hundred panels. It is important to consult the manufacturer's guidelines and technical specifications to determine the maximum number of panels that a particular solar inverter can handle.
Q: What is the role of a fault detection feature in a solar inverter?
The solar inverter relies on a fault detection feature to oversee and detect any irregularities or malfunctions within the system. This crucial feature is essential for the smooth and efficient functioning of the solar inverter. Constantly monitoring the solar inverter's various components and parameters, such as input and output voltages, current levels, temperature, and other critical factors, the fault detection feature analyzes real-time data and compares it to predetermined thresholds or expected values. If any parameter strays from the normal range or exceeds set limits, the fault detection feature promptly identifies it as a fault or abnormality. The primary objective of this feature is to safeguard the solar inverter from potential harm and prevent any safety risks. By swiftly detecting faults, the inverter can take appropriate actions to address the issue or shut down the system if necessary. This safeguards the inverter and other connected devices from further damage. Additionally, the fault detection feature aids in troubleshooting and determining the root cause of the fault. It offers valuable information about the fault's type and location, enabling faster and more accurate repairs or maintenance. This reduces downtime and ensures optimal performance and longevity of the solar inverter. Furthermore, the fault detection feature plays a vital role in system monitoring and maintenance. It provides valuable data and notifications to system operators or maintenance personnel, allowing them to proactively address any potential issues. This maximizes the uptime of the solar inverter and minimizes overall maintenance costs. To summarize, the fault detection feature in a solar inverter continuously monitors, identifies, and responds to faults or abnormalities in the system. Acting as a protective mechanism, it ensures the safe and reliable operation of the inverter, enables swift troubleshooting, and facilitates efficient maintenance practices.
Q: Can a solar inverter be used in a remote location without access to the grid?
No, a solar inverter cannot be used in a remote location without access to the grid. Solar inverters convert DC power generated by solar panels into AC power, which is suitable for use in homes and businesses connected to the electrical grid. Without access to the grid, there is no way to utilize the output of a solar inverter.
Q: What are the main components of a solar inverter system?
The main components of a solar inverter system include the solar panels, the inverter itself, and various electrical components. Solar panels are the primary component of a solar inverter system. These panels are made up of photovoltaic cells that convert sunlight into direct current (DC) electricity. They are typically installed on rooftops or in open areas to maximize exposure to sunlight. The inverter is another crucial component of the system. Its main function is to convert the DC electricity produced by the solar panels into alternating current (AC) electricity, which is the type of electricity used in most homes and businesses. Inverters also regulate the flow of electricity, ensuring it matches the voltage and frequency of the utility grid. Other electrical components are also present in a solar inverter system. These may include wiring, switches, fuses, and circuit breakers, which help to connect the solar panels, inverter, and other equipment to the electrical grid. Additionally, monitoring systems and data loggers are often included to track the performance of the system and provide valuable information on energy production. Finally, a solar inverter system may also include a battery storage system. This allows excess electricity generated by the solar panels to be stored for later use, such as during periods of low sunlight or during power outages. Battery storage systems are becoming increasingly popular as they provide greater energy independence and the ability to utilize solar energy even when the sun is not shining. Overall, the main components of a solar inverter system include solar panels, the inverter, electrical components, and potentially a battery storage system. Each component plays a vital role in harnessing solar energy and converting it into usable electricity for homes and businesses.
Q: Can a solar inverter be used with a solar-powered waste management system?
Yes, a solar inverter can be used with a solar-powered waste management system. A solar inverter is used to convert the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used to power various appliances and systems. In the case of a solar-powered waste management system, the solar inverter would be an essential component to convert the DC power generated by the solar panels into the AC power required to operate the waste management equipment.
Q: What is the role of a cooling system in a solar inverter?
The role of a cooling system in a solar inverter is to regulate and dissipate heat generated during the conversion of DC power from solar panels to AC power for use in homes or businesses. By maintaining optimal operating temperatures, the cooling system ensures the inverter's components do not overheat, which could lead to reduced efficiency, performance degradation, or even system failure.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords