• 10KW Pure Sine Wave Inverter New Function PV3500 Series 48V System 1
  • 10KW Pure Sine Wave Inverter New Function PV3500 Series 48V System 2
  • 10KW Pure Sine Wave Inverter New Function PV3500 Series 48V System 3
10KW Pure Sine Wave Inverter New Function PV3500 Series 48V

10KW Pure Sine Wave Inverter New Function PV3500 Series 48V

Ref Price:
$150.00 - 450.00 / pc get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
50 pc
Supply Capability:
10000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Advances of Solar Inverter 10KW Pure Sine Wave Inverter New Function PV3500 Series 48V

Our solar inverters typically transfer to battery power in less than 16 milliseconds (less than 1/50th of a second).

Our solar backup electric systems use special high-quality electric storage batteries.

 

Main Features of Solar Inverter 10KW Pure Sine Wave Inverter New Function PV3500 Series 48V

.Power range 1kw-112kw
.12/24v/48v input optional
.Powerful Charge Rate Up to 100Amp
.Inbuilt pure copper transformer
.Pure sine wave output
.LED+LCD display
.MPPT solar charge controller 40A 45A 60A
.50/60HZ automatic sensing
.RS232 with free CD
.Battery priority function
.DC Start & Automatic Self-Diagnostic Function
.High Efficiency Design & “Power Saving Mode” to Conserve Energy

 

Specificationsc of Solar Inverter 10KW Pure Sine Wave Inverter New Function PV3500 Series 48V

Solar Inverter Model

1.0KW

1.5KW

2.0KW

3.0KW

4.0KW

5.0KW

6.0KW

8.0KW

10.0KW

12.0KW

Inverter

output

Continuous output power

1.0KW

1.5KW

2.0KW

3.0KW

4.0KW

5.0KW

6.0KW

8.0KW

10.0KW

12.0KW

Surge rating (20ms)

3.0KW

4.5KW

6.0KW

9.0KW

12.0KW

15.0KW

18.0KW

24.0KW

30.0KW

36.0KW

Output waveform

Pure sine wave/ same as input (bypass mode)

Nominal efficiency

>88% (peak)

Line mode efficiency

>95%

Power factor

0.9-1.0

Nominal output voltage RMS

100-110-120VAC/220-230-240VAC

Output voltage regulation

±10% RMS

Output frequency

50Hz ± 0.3Hz / 60Hz ± 0.3Hz

Short circuit protection

Yes (1sec after fault)

Typical transfer time

10ms (max)

THD

< 10%

DC

input

Nominal input voltage

12.0VDC / 24.0VDC / 48.0VDC

24.0VDC /48.0VDC

48.0VDC

Minimum start voltage

10.0VDC /10.5VDC for12VDC mode

*2 for 24VDC, *4 for 48VDC

Low battery alarm

10.5VDC /11.0VDC for12VDC mode

Low battery trip

10.0VDC /10.5VDC for12VDC mode

High voltage alarm

16.0VDC for12VDC mode

Low battery voltage recover

15.5VDC for12VDC mode

Idle consumption-search mode

<25W when power saver on. (refer to table)

Charger

Output voltage

Depends on battery type (refer to table 2.5.2)

Charger breaker rating

10A

15A

20A

20A

20A

30A

30A

40A

40A

40A

Max charge power rate

1/3 Rating power (refer to table 2.5.3)

Battery initial voltage for start

10-15.7VDC for 12VDC mode

*2 for 24VDC, *4 for 48VDC

Over charge protection S.D.

15.7VDC for 12VDC mode

BTS

Battery temperature sensor (optional)

Yes (refer to the table) Variances in charging voltage & S.D. voltage base on the battery temperature.

Bypass & protection

Input voltage waveform

Sine wave (grid or generator)

Nominal voltage

110VAC

120VAC

220VAC

230VAC

230VAC

Max input AC voltage

150VAC for 120VAC LV mode; 300VAC for 230VAC HV mode.

Nominal input frequency

50Hz or 60Hz

Low freq trip

47 ± 0.3Hz for 50Hz; 57 ± 0.3Hz for 60Hz

High freq trip

55 ± 0.3Hz for 50Hz; 65 ± 0.3Hz for 60Hz

Overload protection (SMPS load)

Circuit breaker

Output short circuit protection

Circuit breaker

Bypass breaker rating

10

15

20

30

40

40

40

50

63

63

Transfer switch rating

30Amp for UL & TUV

40Amp for UL

80Amp for UL

Bypass without battery connected

Yes (optional)

Max bypass current

30Amp

40Amp

80Amp

Solar charger
(optional)

Rated voltage

12.0VDC / 24.0VDC / 48.0VDC

Solar input voltage range

15-30VDC / 30-55VDC / 55-100VDC

Rated charge current

40-60A

Rated output current

15A

Self consumption

<10mA

Bulk charge (default)

14.5VDC for12VDC mode

*2 for 24VDC, *4 for 48VDC

Floating charge (default)

13.5VDC for12VDC mode

Equalization charge (default)

14.0VDC for12VDC mode

Over charge disconnection

14.8VDC for12VDC mode

Over charge recovery

13.6VDC for12VDC mode

Over discharge disconnection

10.8VDC for12VDC mode

Over discharge reconnection

12.3VDC for12VDC mode

Temperature compensation

-13.2mVDC/℃ for12VDC mode

Ambient temperature

0-40℃ (full load) 40-60℃ (derating)

Mechanical

specifications

Mounting

Wall mount

Inverter dimensions (L*W*H)

388*415*200mm

488*415*200mm

588*415*200mm

Inverter weight (solar chg) KG

21+2.5

22+2.5

23+2.5

27+2.5

38+2.5

48+2.5

49+2.5

60+2.5

66+2.5

70+2.5

Shipping dimensions (L*W*H)

550*520*310mm

650*520*310mm

750+520+310mm

Shipping weight (solar chg) KG

23+2.5

24+2.5

25+2.5

29+2.5

40+2.5

50+2.5

51+2.5

62+2.5

68+2.5

72+2.5

Display

LED+LCD

Standard warranty

1 year

 

Pictures of Solar Inverter 10KW Pure Sine Wave Inverter New Function PV3500 Series 48V

10KW Pure Sine Wave Inverter New Function PV3500 Series 48V

 

Solar Inverter's Application

10KW Pure Sine Wave Inverter New Function PV3500 Series 48V

 

Warranty of Solar Inverter 10KW Pure Sine Wave Inverter New Function PV3500 Series 48V

OKorder’s Products provides a 1~3 year limited warranty (“Warranty”) against defects in materials and workmanship for its Uninterruptible power supply, Power inverter/chargers, Solar charge controllers, Battery Products (“Product”).

The term of this Warranty begins on the Product(s) initial purchase date, or the date of receipt of the Product(s) by the end user, whichever is later.

This must be indicated on the invoice, bill of sale, and/or warranty registration card submitted to MUST-Solar.

This Warranty applies to the original MUST-Solar Product purchaser, and is transferable only if the Product remains installed in the original use location.

 

Certificates of Solar Inverter 10KW Pure Sine Wave Inverter New Function PV3500 Series 48V

10KW Pure Sine Wave Inverter New Function PV3500 Series 48V

FAQ of Solar Inverter 10KW Pure Sine Wave Inverter New Function PV3500 Series 48V

    How to guarantee the quality of the products?

We have established the international advanced quality management system,every link from raw material to final product we have strict quality test;

We resolutely put an end to unqualified products flowing into the market.

At the same time, we will provide necessary follow-up service assurance.

    How long can we receive the product after purchase?

In the purchase of product within three working days, We will arrange the factory delivery as soon as possible.

Q: How does a solar inverter protect against lightning strikes?
A solar inverter typically protects against lightning strikes by incorporating surge protection devices and grounding systems. These features help to divert the excess energy caused by a lightning strike away from the sensitive electronic components of the inverter, preventing damage and potential electrical hazards.
Q: What is the role of a solar inverter in a community solar project?
The role of a solar inverter in a community solar project is to convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that can be used to power homes and businesses. It also ensures that the electricity is synchronized with the utility grid and optimizes the efficiency of the solar power system.
Q: How does a solar inverter handle voltage transients?
A solar inverter handles voltage transients by regulating and stabilizing the incoming DC voltage from the solar panels, and converting it into a steady AC voltage suitable for use in the electrical grid or for powering appliances. It uses various electronic components and control algorithms to monitor and adjust the voltage levels, ensuring that any sudden changes or fluctuations in the input voltage are smoothed out and the output remains consistent and within acceptable limits.
Q: Can a solar inverter be used in regions with high altitude conditions?
Yes, a solar inverter can be used in regions with high altitude conditions. However, it is important to consider certain factors such as temperature variations, reduced air density, and increased UV radiation at higher altitudes. In such cases, it may be necessary to choose a solar inverter specifically designed to handle these conditions and ensure proper functioning and efficiency of the system.
Q: What is the role of a solar inverter in a grid-tied system?
The role of a solar inverter in a grid-tied system is to convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that can be used to power electrical appliances and be fed back into the utility grid. It also ensures the synchronization of the solar system with the grid and regulates the voltage and frequency of the electricity being produced.
Q: Can a solar inverter be used with a solar-powered vehicle?
Yes, a solar inverter can be used with a solar-powered vehicle. A solar inverter is responsible for converting the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power various devices. In a solar-powered vehicle, the solar panels generate DC electricity, which can be connected to a solar inverter to convert it into AC power that can be used to charge the vehicle's battery or directly power electric components.
Q: What is the maximum AC output current that a solar inverter can provide?
The maximum AC output current that a solar inverter can provide depends on the specific model and capacity of the inverter. In general, it is determined by factors such as the maximum power rating and efficiency of the inverter, as well as the size and configuration of the solar photovoltaic (PV) system it is connected to.
Q: Can a solar inverter be used with a three-phase electrical system?
Yes, a solar inverter can be used with a three-phase electrical system. In fact, many commercial and industrial solar installations use three-phase inverters to convert the direct current (DC) power generated by solar panels into alternating current (AC) power that can be used by the electrical grid. This allows for efficient power conversion and distribution in three-phase systems, which are commonly used in larger electrical installations.
Q: Can a solar inverter be used with a solar-powered data center?
Yes, a solar inverter can be used with a solar-powered data center. A solar inverter is an essential component that converts the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power electrical equipment, including data centers. By integrating a solar inverter into the solar power system of a data center, the generated solar energy can be efficiently used to run the center's operations, reducing reliance on grid electricity and promoting sustainability.
Q: Can a solar inverter be used in areas with limited roof space or installation options?
Yes, a solar inverter can be used in areas with limited roof space or installation options. Solar inverters are typically compact and can be installed in various locations, such as the ground, walls, or even inside the house. In addition, there are different types of solar inverters available, including microinverters and power optimizers, which allow for more flexibility in system design and installation. These options can help maximize the use of available space and provide more installation options for areas with limited roof space.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords