• M2 Steel Flat Bar for Tool Steel System 1
  • M2 Steel Flat Bar for Tool Steel System 2
M2 Steel Flat Bar for Tool Steel

M2 Steel Flat Bar for Tool Steel

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
50000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Alloy Steel
Shape:
Steel Round Bar

M2 Steel Flat Bar for Tool Steel

 

Product description:

Size of M2 high speed steel

Round bar

Diameter(mm)

Length (mm)

Max:800

Max: 9000

Plate

Thickness(mm) 

Width (mm)  

Length (mm)   

Max:800

Max:1000

Max:6000

The specification can be customized.

Chemical Compositons

Grade

C

Si

Mn

P

S

Cr

Mo

W

V

W6o5Cr4V

0.80-0.90

0.20-0.45

0.15-0.40

≤0.03

≤0.03

3.80-4.40

4.50-5.50

5.50-6.75

1.75-2.20

M2

0.78-0.88

0.20-0.45

0.15-0.45

≤0.03

≤0.03

3.75-4.50

4.50-5.50

5.50-6.75

1.75-2.20

1.3343

0.80-0.88

≤0.45

≤0.40

≤0.03

≤0.03

3.80-4.50

4.70-5.20

5.90-6.70

1.70-2.10

SKH51

0.80-0.88

≤0.45

≤0.40

≤0.03

≤0.03

3.80-4.50

4.70-5.20

5.90-6.70

1.70-2.10

 

Features of M2 high speed steel

1, General purpose of tungsten molybdenum high speed steel;

2, High toughness combined with good cutting powers;

3, Will withstand increases in temperature.

 

Typical Applications:

1, Twist drills, reamers, broaching tools, taps, milling tools;

2, Cold forming tools and cutting tools;

3, Plastic moulds with elevated wear resistance and screws.

 

 

Packing:

silver bright steel packaging :

coated with anti-rust oil

-plastic film winding

-woven cloth winding-

-strip steel strapping-wood

shipping:according to contract content 

 

 

Products show:

M2 Steel Flat Bar for Tool Steel

M2 Steel Flat Bar for Tool Steel

M2 Steel Flat Bar for Tool Steel

Q:What are the challenges in casting special steel?
Some of the challenges in casting special steel include achieving the desired chemical composition and metallurgical properties, ensuring proper fluidity and mold filling, controlling shrinkage and porosity, dealing with high melting temperatures, and managing the presence of alloying elements and impurities. Additionally, the complex and intricate designs of special steel components can pose challenges in achieving accurate and defect-free casting.
Q:Can special steel be machined easily?
No, special steel is typically harder and tougher than standard steel, making it more difficult to machine.
Q:What are the challenges in machining special steel alloys?
Machining special steel alloys presents several challenges. These alloys are typically harder and more brittle than regular steel, making them more difficult to cut and shape. They also tend to generate higher heat during the machining process, increasing the risk of tool wear and thermal damage. Special steel alloys may also have complex microstructures and chemical compositions, which can result in uneven material removal and unpredictable machining behavior. Additionally, these alloys often have lower machinability ratings, requiring specialized cutting tools and techniques to achieve desired results. Overall, the challenges in machining special steel alloys lie in their hardness, heat generation, complex microstructures, and lower machinability, necessitating expertise and careful consideration during the machining process.
Q:What is the hardness range of special steel?
The hardness range of special steel can vary depending on the specific alloy and heat treatment, but generally it falls between 50 and 70 on the Rockwell C hardness scale.
Q:What are the different mechanical defects in special steel?
Some of the different mechanical defects in special steel include cracks, voids, inclusions, segregation, and deformation.
Q:What are the different international standards for special steel?
There are several international standards for special steel, including the American Society for Testing and Materials (ASTM) standards, the International Organization for Standardization (ISO) standards, and the European Standards (EN) standards. These standards define the chemical composition, mechanical properties, and testing requirements for various types of special steel, ensuring quality and consistency in their production and usage worldwide.
Q:How does special steel contribute to the agriculture aftermarket industry?
Special steel contributes to the agriculture aftermarket industry by offering enhanced durability, strength, and corrosion resistance, which are crucial for manufacturing agricultural machinery and equipment. It allows for the production of high-quality components that can withstand harsh farming conditions and heavy usage. Additionally, special steel enables the creation of innovative designs and improved performance, ultimately increasing productivity and efficiency in the agriculture sector.
Q:How does special steel perform in terms of corrosion resistance in acidic environments?
Special steel, also known as stainless steel, is highly regarded for its exceptional corrosion resistance in various environments, including acidic conditions. It contains a minimum of 10.5% chromium, which forms a protective layer on the surface of the steel known as a passive film. This passive film acts as a barrier, preventing the steel from coming into direct contact with the corrosive elements present in acidic environments. The chromium content in special steel enables it to react with oxygen in the atmosphere, creating a thin and transparent oxide layer. This oxide layer is highly stable and self-healing, making stainless steel highly resistant to corrosion caused by acids. The presence of other alloying elements such as nickel and molybdenum further enhances its resistance to acidic corrosion. In acidic environments, special steel exhibits excellent resistance to both general corrosion and localized corrosion, such as pitting and crevice corrosion. It can withstand a wide range of acid concentrations and temperatures, making it suitable for applications in industries such as chemical processing, pharmaceuticals, and marine environments where exposure to acidic solutions is common. It is important to note that the performance of special steel in acidic environments may vary depending on the specific grade and composition of the steel. Different grades of stainless steel have varying levels of alloying elements, which can influence their corrosion resistance properties. Therefore, it is essential to select the appropriate grade of special steel that matches the specific acidic environment to ensure optimal performance and longevity.
Q:How does special steel perform in terms of weldability?
Special steel generally performs well in terms of weldability. It has good ductility and can be easily welded using various welding methods such as arc welding, resistance welding, and laser welding. The composition and properties of special steel are specifically designed to ensure that it can be successfully welded without compromising its strength and integrity. However, the specific weldability of special steel may vary depending on its exact composition and specific grade. It is always recommended to consult the manufacturer's guidelines and follow proper welding procedures to achieve the best results when working with special steel.
Q:What are the different methods for tempering special steel?
There are different methods available for tempering special steel, each having its own advantages and considerations. Some commonly used methods for tempering special steel are: 1. Air Tempering: Special steel is heated to a specific temperature and allowed to cool in still air. This method is suitable for low alloy steels and results in uniform hardness throughout the steel. 2. Oil Tempering: Special steel is heated to a specific temperature and then rapidly cooled by quenching it in oil. This method is commonly used for tool steels as it provides a good balance between hardness and toughness. 3. Water Tempering: Similar to oil tempering, this method involves quenching the steel in water after heating it to a specific temperature. It leads to a harder steel due to faster cooling, but it may also increase brittleness. 4. Salt Bath Tempering: The steel is immersed in a molten salt bath at a specific temperature. This method ensures controlled and uniform heat transfer, resulting in consistent hardness throughout the steel. 5. Cryogenic Tempering: Steel is cooled to extremely low temperatures, often below -100°C (-148°F), using liquid nitrogen or helium. This method further reduces residual stresses and enhances wear resistance of the steel. It is important to consider various factors such as the type of steel, desired hardness, intended application, and the required balance between hardness and toughness when choosing a specific tempering method for special steel. Following proper heat treatment guidelines and seeking advice from experts is crucial to achieve optimal results for a particular steel alloy.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords