• LSAW Welded Pipes carbon ASTM A 53, API 5L, DIN,JIS System 1
  • LSAW Welded Pipes carbon ASTM A 53, API 5L, DIN,JIS System 2
  • LSAW Welded Pipes carbon ASTM A 53, API 5L, DIN,JIS System 3
LSAW Welded Pipes carbon ASTM A 53, API 5L, DIN,JIS

LSAW Welded Pipes carbon ASTM A 53, API 5L, DIN,JIS

Ref Price:
get latest price
Loading Port:
Shanghai Port
Payment Terms:
TT or L/C
Min Order Qty:
50MT m.t.
Supply Capability:
based on order m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Specification of LSAW Welded Steel Pipes

 

1)Application: It is widely applied to line pipe in oil and sewage transportation , and it is used in Low pressure liquid and gassy transportation and it is also good Structure pipe in building and bridge field.

 

2)Standard:ASTM A53,ASTM A671 ,ASTM A672 .ASTM A252  API 5L (PSL-1,PSL-2) ,API 5L 2B ,2H,2W.DIN1626,DIN17175,DIN1629.JISG 3452,JISG3457/3456,JISG3461.GB 9711.1/SY5037/GB3092

 

3)Grade:API 5L GR.B, X40, X42, X52, X56, X60, X65, X70.ST37/37-2,ST33,ST35.8,ST35.4.GB 9711.1/SY5037/GB3092

2.Size of Pipes

OD: 406.4MM-1422MM (16”-56”)

Thickness: 8MM-50.8MM depends on OD

 

3. Packing & Delivery

 

Packing Detail: bundles with anti-rust painting and with plastic caps

 

Delivery Term: 30 days after receving payment or L/C

4.Data Sheet

Standard: APISPEC 5L

 

Mechanical Properties

 

Standard

Grade

(MPa)

(MPa)

Yield strength

Tensile Strength

API SPEC 5L

PSL1

B

≥241

≥414

×42

≥290

≥414

×46

≥317

≥434

×52

≥359

≥455

×56

≥386

≥490

×60

≥414

≥517

×65

≥448

≥531

×70

≥483

≥565

PSL2

 

Min

Max

Min

Max

B

241

448

441

758

×42

290

496

414

758

×46

317

524

434

758

×52

359

531

455

758

×56

386

544

490

758

×60

414

565

517

758

×65

448

600

531

758

×70

483

621

565

758

 

 

Chemical Composition(%)

 

Standard

Grade

C

Mn

P

S

CEV

Max

Max

Max

Max

Max

PSL1

 

-

B

0.26

1.2

0.030

0.030

×42

0.26

1.3

0.030

0.030

×46,×52,×56,X60

0.26

1.4

0.030

0.030

X65

0.26

1.45

0.030

0.030

X70

0.26

1.65

0.030

0.030

PSL2

 

 

0.43

B

0.22

1.20

0.025

0.015

×42

0.22

1.30

0.025

0.015

×46,×52,×56, X60

0.22

1.40

0.025

0.015

X65

0.22

1.45

0.025

0.015

X70

0.22

1.65

0.025

0.015

 

5. Products Showroom

 

LSAW carbon welded pipe

carbon LSAW Welded Pipe

LSAW

Q:What are the different methods of insulating steel pipes?
There are several different methods of insulating steel pipes, depending on the specific needs and requirements of the application. Some of the common methods include: 1. Insulation wraps: This method involves wrapping the steel pipes with insulating materials such as fiberglass, mineral wool, or foam insulation. The insulation is then secured with adhesive or tape to ensure a tight and secure fit. Insulation wraps are cost-effective and relatively easy to install, making them a popular choice for many applications. 2. Insulation coatings: This method involves applying a layer of insulating material directly onto the surface of the steel pipe. The coating can be made from materials such as epoxy, polyurethane, or polyethylene. Insulation coatings are ideal for situations where the pipes are exposed to harsh environments, as they provide a protective barrier against corrosion and temperature fluctuations. 3. Insulation jackets: This method involves using pre-fabricated insulation jackets that are designed to fit over the steel pipes. These jackets are typically made from a combination of insulation materials and a weatherproof outer layer. Insulation jackets are commonly used for outdoor or exposed pipelines, as they provide excellent insulation and protection against external elements. 4. Insulation foam: This method involves injecting foam insulation into the cavity between the steel pipe and an outer casing. The foam expands and hardens, creating a sealed and insulated layer around the pipe. Foam insulation is highly effective in preventing heat loss or gain, and it also provides excellent soundproofing properties. 5. Insulation tapes: This method involves using specialized insulation tapes that are wrapped around the steel pipes. These tapes are typically made from materials such as PVC or rubber, which have good insulating properties. Insulation tapes are often used for smaller pipes or joints, as they provide a flexible and easy-to-apply solution. It is important to consider factors such as the operating temperature, environmental conditions, and specific requirements of the application when choosing the appropriate method of insulating steel pipes. Consulting with a professional or insulation specialist can help in determining the most suitable insulation method for your specific needs.
Q:What are the different methods of pipe coating for steel pipes?
There are several methods of pipe coating for steel pipes, including fusion-bonded epoxy (FBE) coating, three-layer polyethylene (3LPE) coating, three-layer polypropylene (3LPP) coating, and liquid epoxy coating. Each method offers different levels of protection against corrosion, abrasion, and other environmental factors, ensuring the durability and longevity of the steel pipes.
Q:What is the difference between steel pipe and round steel?
The middle of the steel pipe is hollow, and the round steel is solid. When compared with the solid steel such as round steel, the steel tube has the same flexural strength and torsion strengthLight weight, is an economic section of steel, widely used in the manufacture of structural and mechanical parts, such as oil drilling pipe, automobile transmission shaft, bicycle frame and steel scaffolding used in construction.
Q:How are steel pipes recycled?
Steel pipes are recycled through a multi-step process that involves collection, sorting, cleaning, and melting. First, the used steel pipes are gathered from various sources such as construction sites or industrial facilities. Then, they are sorted based on their size, shape, and quality. Next, any contaminants or coatings are removed from the pipes through cleaning and stripping processes. Finally, the cleaned pipes are melted down in a furnace, and the molten steel is formed into new pipes or other steel products. This recycling process reduces the demand for new raw materials and helps conserve energy and resources.
Q:What are the different types of fittings used with steel pipes?
Steel pipes are commonly paired with various fittings that serve to connect, control, or alter the flow direction in a piping system. Some of these fittings include: 1. Elbow fittings: Designed to modify the flow direction, elbow fittings are available in different angles, such as 45 or 90 degrees. They are frequently utilized to navigate obstacles or introduce bends in the pipe. 2. Tee fittings: Tee fittings are implemented to create a branch or division in the piping system. With three openings, one perpendicular to the other two, they enable the connection of two pipes at a 90-degree angle. 3. Coupling fittings: Used to join two pipes of the same size, coupling fittings are typically threaded and can be easily fastened or removed with a wrench. They are commonly employed when pipes need to be connected or repaired. 4. Reducer fittings: Reducers are employed to connect pipes of varying sizes. They consist of one end with a larger diameter and another end with a smaller diameter. Reducers are often employed to transition between pipe sizes or adapt to different equipment or fittings. 5. Flange fittings: Flanges are utilized to establish a secure and leak-proof connection between pipes, valves, or other equipment. They consist of a flat, circular plate with holes to accommodate bolts or screws for fastening the flange to the pipe. Flange fittings find frequent use in applications that necessitate frequent disassembly and reassembly. 6. Union fittings: Union fittings are employed to join two pipes in a manner that facilitates easy disconnection. They comprise three parts: a nut, a female end, and a male end. Union fittings are commonly used in scenarios that require periodic maintenance or repairs. 7. Cap fittings: Cap fittings are employed to seal the end of a pipe. Usually threaded, they can be effortlessly screwed onto the pipe's end. Cap fittings are commonly used in instances where temporary closure or protection of pipes is necessary. These examples represent some of the various fittings utilized with steel pipes. The specific fitting required depends on factors such as the application, pipe size and material, as well as the desired functionality of the piping system.
Q:What is the fire rating of steel pipes?
Several factors determine the fire rating of steel pipes. Steel possesses inherent fire resistance due to its high melting point and low thermal conductivity. However, the fire rating of steel pipes can be further improved by employing fire-resistant coatings or insulation materials. These additional measures can offer different levels of fire protection, typically quantified by how long the pipes can retain their structural integrity during a fire situation. The precise fire rating of steel pipes may differ depending on the thickness and type of coating or insulation employed. To ascertain the appropriate fire rating requirements for specific applications, it is crucial to refer to industry standards, such as those established by organizations like the National Fire Protection Association (NFPA), or consult with fire safety professionals.
Q:How are steel pipes used in heating systems?
Steel pipes are commonly used in heating systems to transport hot water or steam from the boiler to various heating devices, such as radiators or baseboard heaters. The steel pipes are durable and can withstand high temperatures and pressure, ensuring efficient and safe distribution of heat throughout the building.
Q:Are steel pipes suitable for underground compressed air systems?
Yes, steel pipes are generally suitable for underground compressed air systems. Steel pipes have several advantages that make them a popular choice for such applications. Firstly, steel pipes are known for their high strength and durability, which allows them to withstand the pressure and stress associated with compressed air systems. They can handle high operating pressures without any significant risk of bursting or leaking. Secondly, steel pipes have excellent resistance to corrosion and can withstand exposure to moisture, soil, and other underground elements. This makes them a reliable choice for underground installations, where pipes may be exposed to moisture and other potentially corrosive substances. Furthermore, steel pipes are relatively easy to install and maintain. They can be welded or threaded together, ensuring a secure and leak-free connection. Additionally, steel pipes can be easily inspected and repaired if necessary, allowing for cost-effective maintenance and repairs. However, it is important to note that the suitability of steel pipes for underground compressed air systems may also depend on other factors such as the specific requirements and conditions of the system. It is advisable to consult with a professional engineer or a qualified expert to ensure that steel pipes are the most appropriate choice for a specific application.
Q:What is the maximum bending radius for steel pipes?
The maximum bending radius for steel pipes depends on various factors, such as the pipe diameter, wall thickness, and the type of steel used. Generally, larger diameter pipes with thicker walls have a larger maximum bending radius. However, it is important to follow industry standards and guidelines to ensure the structural integrity of the pipe is maintained during the bending process. Consulting the manufacturer's specifications or referring to relevant codes and standards, such as the American Society of Mechanical Engineers (ASME) B31.1 or B31.3, can provide specific information on the maximum bending radius for steel pipes in different applications.
Q:How do you calculate the pipe deflection for steel pipes?
To determine the pipe deflection of steel pipes, various factors must be taken into account. Pipe deflection refers to the bending or displacement that occurs when a load is applied. The following steps outline the process for calculating pipe deflection: 1. Obtain the steel pipe properties: Familiarize yourself with the material properties of the steel pipe, including its Young's modulus (E) and moment of inertia (I). Young's modulus denotes the material's stiffness, while the moment of inertia measures its resistance to bending. 2. Identify the applied load: Determine the nature and magnitude of the load that will be exerted on the pipe. This may encompass internal pressure, external loads, or thermal expansion. 3. Utilize the appropriate formula: Depending on the load type and pipe support conditions, the suitable formula must be employed to calculate the deflection. For instance, if the pipe is simply supported (fixed at both ends), the formula δ = (5 * w * L^4) / (384 * E * I) can be used. Here, δ represents the deflection, w signifies the load per unit length, L denotes the pipe length, and E and I refer to the previously mentioned material properties. 4. Input values and compute: Insert the load, pipe length, and material properties into the formula. By doing so, the deflection of the steel pipe can be determined. It is crucial to note that calculating pipe deflection is a complex procedure that necessitates expertise in structural engineering. Therefore, it is advisable to consult a professional engineer or employ specialized software for accurate and reliable results.
We has nine sets of machine unit for Φ219-Φ2850 of SAWH steel pipe with an annual production capacity of around 260,000 tons, two sets of SAWL production lines: one with Φ1422 maximum and one Φ813 maximum with an annual production of 200,000 tons, two sets of machine unit for Φ168 maximum and Φ508 maximum HFW steel pipe with an annual production volume of around 160,000 tons, four sets of machine unit of square and rectangle pipe for the size of 200×200, 400×400, 250×250, 300×300 with an annual production capacity of around 140,000 tons and two sets of machine unit for internal and external coating with an annual production capacity of 2,000,000 sq.meters.

1. Manufacturer Overview

Location Wuxi, China
Year Established 1980
Annual Output Value Above Three Million To Five Million RMB
Main Markets Main land
Company Certifications Certificate of Conformity; API 5CT

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port Shanghai
Export Percentage 30%-40%
No.of Employees in Trade Department 1400 People
Language Spoken: English; Chinese
b)Factory Information  
Factory Size: 1500 square meters
No. of Production Lines Above 14
Contract Manufacturing CNPC;Sinopec Group
Product Price Range Average

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords