• Low Price of Coke Coal Metallurgical Coke Price with Low Sulfur System 1
  • Low Price of Coke Coal Metallurgical Coke Price with Low Sulfur System 2
Low Price of Coke Coal Metallurgical Coke Price with Low Sulfur

Low Price of Coke Coal Metallurgical Coke Price with Low Sulfur

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
20000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1.Structure of Anthracite Description

Anthracite is made from Shanxi,the coal capital of the word .The quality is very high due to its unique resource .It has been exported to most of the world ,especially to Japan and Korea,as well as mid east.

It is commonly used in drinking water ,food industry ,chemical /dyeing industry ,sea/salt water filtration ,petro-chemical industry ,pulp/paper industry ,sauna,spa,pool,boiler ,etc.

Advantages:

1. Longer Filter Runs2. Faster Filtration3. Long Lifetime4. Good Separation Characteristics5. Savings water and power in washing6.Removes more iron and manganese salts tration ,petrochemical industry ,pulp /paper industry ,sauna,spa,pool,boiler,etc.

2. Main Features of Anthracite

Fixed Carbon: 78 %
Ash: 18 %
Volatile Matter: 4 %
Sulphur: 1.0 %
Moisture: 11 %
Gross Calorific Value: 6450 Kcal
Size: 0 mm - 19 mm: 90%

3. The Images of Anthracite

 

Low Price of Coke Coal Metallurgical Coke Price with Low Sulfur

Low Price of Coke Coal Metallurgical Coke Price with Low Sulfur


 

4. The Specification of Anthracite

1. Fixed carbon: 90%min
2.Uniform particles
3.Good separation characteristics
4. Long life
5. Widely used

6.activated anthracite:
7.Certificate: ISO9001, ISO9002, NSF
8.Usage: for water and air purification, etc.

5.FAQ of Anthracite

1). Q: Are you a factory or trading company?

A: We are a factory.

2). Q: Where is your factory located? How can I visit there?

A: Our factory is located in ShanXi, HeNan, China. You are warmly welcomed to visit us!

3). Q: How can I get some samples?

A: Please connect me for samples

4). Q: Can the price be cheaper?

A: Of course, you will be offered a good discount for big amount.

 


Q:Emerald garden high carbon tempered metal
The middle gate's most advanced war puppet! 3 o'clock, 9 o'clock position.Black dealers are also available
Q:Yes, I have a weapon, want to strengthen 11, said to be advanced furnace rock carbon, do not know how to get, look at the prawns pointing
Pro, tell you an unfortunate news, out of the eighty furnace rock carbon, old horse recycling, burning their own boilers, and now we strengthen the use of colorless small crystal block, that is, the colorless small crystal block instead of the original furnace rock carbon.
Q:How does carbon affect the formation of blizzards?
Carbon does not directly affect the formation of blizzards. Blizzards are primarily caused by the collision of warm and cold air masses, resulting in heavy snowfall and strong winds. However, carbon emissions and climate change can influence weather patterns, potentially leading to more intense or frequent blizzards in certain regions due to alterations in atmospheric conditions.
Q:Material characteristics of carbon fiber
Carbon fiber is a kind of new material with excellent mechanical properties due to its two characteristics: carbon material, high tensile strength and soft fiber workability. The tensile strength of carbon fiber is about 2 to 7GPa, and the tensile modulus is about 200 to 700GPa. The density is about 1.5 to 2 grams per cubic centimeter, which is mainly determined by the temperature of the carbonization process except for the structure of the precursor. Generally treated by high temperature 3000 degrees graphitization, the density can reach 2 grams per cubic mile. Coupled with its weight is very light, it is lighter than aluminum, less than 1/4 of steel, than the strength of iron is 20 times. The coefficient of thermal expansion of carbon fiber is different from that of other fibers, and it has anisotropic characteristics. The specific heat capacity of carbon fiber is generally 7.12. The thermal conductivity decreases with increasing temperature and is negative (0.72 to 0.90) parallel to the fiber direction, while the direction perpendicular to the fiber is positive (32 to 22). The specific resistance of carbon fibers is related to the type of fiber. At 25 degrees centigrade, the high modulus is 775, and the high strength carbon fiber is 1500 per centimeter.
Q:What are the environmental impacts of carbon emissions from industries?
The environmental impacts of carbon emissions from industries are significant and wide-ranging. Firstly, carbon emissions contribute to the greenhouse effect, which leads to global warming and climate change. The excessive release of carbon dioxide and other greenhouse gases into the atmosphere traps heat, causing the Earth's temperature to rise. This has resulted in the melting of polar ice caps, rising sea levels, and extreme weather events such as hurricanes and droughts. These changes disrupt ecosystems, lead to the loss of biodiversity, and threaten the survival of numerous species. Secondly, carbon emissions contribute to air pollution. Industries release not only carbon dioxide but also other harmful pollutants such as sulfur dioxide, nitrogen oxides, and particulate matter. These pollutants can have detrimental effects on human health, causing respiratory problems, cardiovascular diseases, and even premature death. In addition, they contribute to the formation of smog and acid rain, which further damage ecosystems and harm plant and animal life. Moreover, carbon emissions from industries have a negative impact on water systems. When carbon dioxide dissolves in water, it forms carbonic acid, leading to a decrease in pH levels and making the water more acidic. This acidification harms marine life, particularly organisms with shells or skeletons made of calcium carbonate, such as coral reefs, shellfish, and plankton. The disruption of marine ecosystems can have cascading effects on other species and disrupt the food chain. Lastly, carbon emissions contribute to deforestation and habitat destruction. Industries often rely on fossil fuels for energy, which leads to the clearing of forests to make way for mining or drilling operations. This destruction of natural habitats not only reduces biodiversity but also releases stored carbon from trees into the atmosphere, exacerbating the carbon emissions problem. To mitigate these environmental impacts, industries must prioritize the reduction of carbon emissions. This can be achieved through adopting cleaner and more sustainable energy sources, implementing energy-efficient technologies, and implementing stricter regulations and policies. Transitioning to renewable energy, improving industrial processes, and investing in carbon capture and storage technologies are essential steps towards mitigating the environmental impacts of carbon emissions from industries.
Q:How does carbon impact food production?
There are several ways in which carbon affects food production. To begin with, carbon dioxide (CO2) is a significant greenhouse gas that plays a role in climate change. The presence of higher levels of CO2 in the atmosphere leads to increased temperatures, changes in rainfall patterns, and more frequent extreme weather events. All of these factors can have a negative impact on crop growth and productivity. For instance, excessive heat can result in lower crop yields and reduced quality, while intense rainfall or droughts can cause flooding or water scarcity, both of which can harm crops and decrease agricultural productivity. Moreover, carbon emissions originating from agricultural practices, such as the utilization of synthetic fertilizers, deforestation for agriculture, and livestock production, contribute to the overall carbon footprint of the food system. These emissions worsen climate change, establishing a vicious cycle in which climate change has an adverse effect on food production, while food production, in turn, contributes to climate change. Furthermore, the production of food is also influenced by carbon emissions from its transportation and processing. The transportation of food over long distances, which often involves the use of fossil fuels, leads to carbon emissions. Similarly, the processing and packaging of food require energy, often derived from fossil fuels, which further adds to carbon emissions. To alleviate the carbon impact on food production, it is necessary to adopt sustainable agricultural practices. This includes techniques like agroforestry, organic farming, and precision agriculture, which can help store carbon in soils, reduce dependency on synthetic fertilizers, and enhance overall soil health. Additionally, reducing food waste and promoting the consumption of local and seasonal food can decrease carbon emissions associated with transportation and processing. In conclusion, carbon affects food production through its contribution to climate change and the resulting extreme weather events, as well as through emissions generated from agricultural practices and food processing. Addressing these impacts is crucial for ensuring food security and sustainability in the face of climate change.
Q:What are carbon isotopes and how are they used in scientific research?
Carbon isotopes are variants of the carbon atom that have different numbers of neutrons in their atomic nucleus. The most common carbon isotope is carbon-12, which has 6 protons and 6 neutrons. However, there are also carbon-13 and carbon-14 isotopes, which have 7 and 8 neutrons respectively. In scientific research, carbon isotopes are utilized in various ways due to their unique properties. One significant application is in the field of radiocarbon dating. Carbon-14, a radioactive isotope, undergoes decay over time, making it useful for determining the age of organic materials up to 50,000 years old. By measuring the ratio of carbon-14 to carbon-12 in a sample, scientists can estimate how long it has been since the organism died. Furthermore, carbon isotopes are employed in studying carbon cycling in ecosystems. Since plants preferentially take up carbon-12 over carbon-13, the isotopic composition of carbon in plants can reveal information about their growth and the source of their carbon. By analyzing the isotopic signatures in plant tissues, scientists can understand ecological processes such as photosynthesis, respiration, and carbon dioxide exchange between different components of the ecosystem. Carbon isotopes are also used in studying the diets of animals. The isotopic composition of carbon in an animal's tissues reflects the carbon sources it consumes. By analyzing the ratio of carbon-13 to carbon-12, scientists can determine whether an animal predominantly consumes plants or other animals, providing insights into food webs, trophic levels, and ecological interactions. In addition to these applications, carbon isotopes find utility in fields like paleoclimatology, where the ratio of carbon-13 to carbon-12 in ancient ice cores or ocean sediments can provide valuable information about past climate conditions. Isotopic analysis of carbon compounds is also used in forensic science, geochemistry, and environmental monitoring to trace the origin and fate of pollutants and contaminants. In conclusion, carbon isotopes are variants of carbon atoms with different numbers of neutrons. They are extensively used in scientific research for radiocarbon dating, studying carbon cycling in ecosystems, determining animal diets, understanding past climate conditions, and various other fields. Their unique properties make them invaluable tools for understanding the natural world and our place within it.
Q:Rod box material, there is a kind of material called carbon fiber, who knows this material is good?
This material is good. Carbon fiber is a new kind of fiber material with high strength and high modulus of carbon content of more than 95%. It is a flaky graphite, microcrystalline and other organic fibers stacked along the axial direction of the fiber, obtained by carbonization and graphitization of microcrystalline graphite material. Carbon fiber "an hand in a velvet glove lighter than aluminum," the quality, but the strength is higher than that of steel, and has the characteristics of corrosion resistance, high modulus, in the national defense and civilian areas are important materials. It has not only the intrinsic characteristics of carbon materials, but also the softness and processability of textile fibers. It is a new generation of reinforced fiber.
Q:Is the hardness or softness of the steel with higher carbon content?
Carbon is the major element in determining the properties of steel, because changes in carbon content lead directly to changes in crystal structure.
Q:Organic matter is converted from organic carbon. Why is humus represented by carbon instead of converted?
However, humus is an important part of soil organic matter, is formed by the decomposition of organic matter in the soil, is a black amorphous organic colloid. Humus is organic polymer compound with colloidal acid, high content of nitrogen. The humus must be organic carbon content, and with the soil humus carbon content was positively correlated.Humus is a kind of soil organic matter, while soil organic matter also contains fresh organic matter and partially decomposed organic matter

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches