• Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar Catalogue System 1
  • Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar Catalogue System 2
  • Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar Catalogue System 3
  • Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar Catalogue System 4
  • Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar Catalogue System 5
  • Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar Catalogue System 6
Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar Catalogue

Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar Catalogue

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
3 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Carbon Steel
Shape:
Steel Flat Bar

Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar Catalogue

Details of  Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar Catalogue

Name

Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar Catalogue

Shape

Flat Bar

Standard

GB/ASTM/SAE/AISI/DIN/JIS/EN/BS

Surface Treatment:

Black/Peeling/Polished/Machined  

Delivery Condition:

Hot Rolled or Forged/Peeled or Black Surface

Test

SGS/UT 100% Elements Testing

Certificate:

ISO/Mill Certificate

Service:

24 hours online service /

more than 20 years trading and manufacture 

Quality Assurance:

the third party inspection, such as SGS, BV, TUV…etc. is acceptable

Packaging Details:

Seaworthy Packaging or as per customer's packing instruction

steel flat bar grade

A36, Q235, Q195, SS400, St37-2

steel flat bar standard

GB, ASTM, AISI, EN, JIS

steel flat bar thickness

1.8mm-17.75mm

steel flat bar width

10mm-870mm

steel flat bar length

6m, 9m, 12m or as customer requirement

steel flat bar technique

Slitting hot rolled steel coil

 

Specification of Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar Catalogue

Width

Thickness

Length

Theoretical Weight

(mm)

(mm)

(m)

        (kg/m)

20

2

6/9/12

0.31

20

2.5

6/9/12

0.39

20

2.75

6/9/12

0.43

25

2.5

6/9/12

0.49

25

3.75

6/9/12

0.74

30

2.5

6/9/12

0.59

30

3.5

6/9/12

0.82

30

9.75

6/9/12

2.3

40

3.5

6/9/12

1.1

40

4.75

6/9/12

1.5

40

11.75

6/9/12

3.69

50

2.75

6/9/12

1.08

50

4.5

6/9/12

1.77

50

9.75

6/9/12

3.83

60

5.5

6/9/12

2.6

60

7.5

6/9/12

3.53

60

11.5

6/9/12

5.42

80

5.5

6/9/12

3.45

80

7.5

6/9/12

4.71

80

11.75

6/9/12

7.38

100

3.25

6/9/12

2.55

100

4.75

6/9/12

3.73

100

7.5

6/9/12

5.89

120

9.75

6/9/12

9.18

120

11.75

6/9/12

11.07

150

9.75

6/9/12

11.48

150

11.5

6/9/12

13.54

150

13.5

6/9/12

15.9

160

11.75

6/9/12

14.76

200

9.5

6/9/12

14.92

250

5.75

6/9/12

11.28

340

7.75

6/9/12

20.68

 

CNBM Introduction of Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar Catalogue Supplier

CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.

With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.

Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar Catalogue

 Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar Catalogue

After-sale service

  • CNBM provides the services and support you need for

    every step of our cooperation. We’re the business partners you

    can trust; you can relax and get on with doing business.

  • For any problem, please kindly contact us at any your

    convenient time, we’ll reply you in our first priority within 24 hours

Advantages  

 

  • Industry experience over 20 years.

  • Shipment of goods -More than 70 countries worldwide.

  • The most convenient transport and prompt delivery.

  • Competitive price with best service.

  • High technical production line with top quality products.

  • High reputation based on best quality products.

     

 

Packaging & Delivery  Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar Catalogue

Packaging Detail

Sea worthy packing /as per customer's packing instruction

Delivery Detail

15 ~ 40 days after receiving the deposit

 

Products Show

Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar Catalogue

FAQ:   

Are you a trading company or manufacturer?

Manufacturer

What’s the MOQ?

3 metric ton

What’s your delivery time? 

15-35 days after downpayment received

Do you Accept OEM service?

Yes

what’s your delivery terms?

FOB/CFR/CIF

What's the Payment Terms?

30% as deposit,70% before shipment by T/T

Western Union acceptable for small amount.

L/C acceptable for large amount.

Scrow ,Paybal,Alipay are also ok

Why  choose  us?

Chose happens because of quality, then price, We can give you both.

Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals.

What's your available port of Shipment?

Main Port, China

What’s your featured  services?

Our service formula: good quality+ good price+ good service=customer's trust

 

Where are your Market?

Covering more than 160 countries in the world

 

Q:How does special steel contribute to the aerospace racing aftermarket industry?
Special steel is an essential component in the aerospace racing aftermarket industry as it plays a significant role in enhancing the performance, durability, and safety of aircraft and racing vehicles. Firstly, special steel is used in the manufacturing of critical engine components, such as turbine blades, compressor discs, and shafts. These components must withstand extreme temperatures, pressures, and mechanical stress during operation. Special steel alloys, such as nickel-based superalloys, provide excellent heat resistance, high strength, and exceptional corrosion resistance, ensuring peak performance and reliability of the engine systems. Moreover, special steel is vital in the construction of airframe structures. The lightweight but high-strength properties of special steel alloys, such as titanium alloys, are crucial in reducing the overall weight of aircraft and racing vehicles. This weight reduction contributes to improved fuel efficiency, increased speed, and better handling capabilities, making it an indispensable material in the aerospace racing aftermarket. In addition, special steel is utilized in the production of landing gear systems, which are crucial for safe takeoffs, landings, and overall maneuverability. The landing gear must endure immense forces and shock loads during these operations. Special steel alloys, like chromium-molybdenum steel, offer exceptional toughness, fatigue resistance, and impact strength, ensuring the landing gear's reliability and longevity. Furthermore, special steel plays a crucial role in the manufacturing of aerospace racing aftermarket components, such as fasteners, bearings, and gears. These components require high strength, wear resistance, and dimensional stability to withstand the demanding conditions of racing and provide optimal performance. Special steel alloys, including stainless steel and tool steel, possess these desirable properties, ensuring the longevity and reliability of these crucial components. Overall, special steel's contribution to the aerospace racing aftermarket industry cannot be overstated. Its exceptional properties, including high strength, heat resistance, corrosion resistance, and fatigue resistance, enable the production of reliable, efficient, and high-performance aircraft and racing vehicles. Without special steel, the aerospace racing aftermarket industry would be unable to achieve the level of advanced technology, speed, and safety that it currently enjoys.
Q:What are the different magnetic grades of special steel?
The different magnetic grades of special steel include ferritic, martensitic, austenitic, and duplex stainless steels.
Q:What are the different testing methods for special steel?
There are various testing methods for special steel, including hardness testing, tensile testing, impact testing, metallographic testing, and non-destructive testing. Each method helps assess different properties of the steel, such as strength, toughness, microstructure, and defects, ensuring its quality and suitability for specific applications.
Q:Can special steel be used in the renewable energy industry?
Yes, special steel can be used in the renewable energy industry. Special steel, such as corrosion-resistant or high-strength steel, can be employed in various applications within the renewable energy sector. For instance, it can be used in the manufacturing of wind turbine components, solar panel frames, and hydroelectric infrastructure. The unique properties of special steel make it suitable for withstanding harsh environmental conditions and ensuring long-term durability and performance in renewable energy systems.
Q:How does special steel perform in terms of creep resistance at elevated temperatures?
Special steel is known for its excellent performance in terms of creep resistance at elevated temperatures. Creep refers to the gradual deformation of a material under constant stress at high temperatures over an extended period. Special steel, specifically designed to withstand high temperatures, demonstrates a remarkable ability to resist creep and maintain its structural integrity. The unique composition of special steel, which includes various alloying elements such as chromium, molybdenum, and vanadium, contributes to its exceptional creep resistance. These alloying elements enhance the steel's high-temperature strength, increase its resistance to deformation, and inhibit the formation of detrimental microstructural changes that can occur during creep. Furthermore, special steel undergoes specific heat treatment processes, such as quenching and tempering, which further enhance its creep resistance. These processes help refine the steel's microstructure, resulting in a fine-grained and homogenous material that can resist deformation even under prolonged exposure to high temperatures. The superior creep resistance of special steel makes it a preferred choice in various industries that operate under high-temperature conditions, such as power generation, petrochemical, and aerospace. It allows for extended service life, reduced maintenance, and increased safety in critical applications where failure due to creep deformation could have severe consequences. In summary, special steel exhibits exceptional performance in terms of creep resistance at elevated temperatures. Its unique composition, including alloying elements and specific heat treatment processes, enables it to resist deformation and maintain its structural integrity even under prolonged exposure to high temperatures.
Q:Carbon steel and stainless steel and pattern steel and special steel and high carbon steel difference
Stainless steel with high chromium content and high grade steel is forged together with different steel
Q:What are the corrosion resistance properties of special steel?
Special steel, also known as stainless steel, exhibits excellent corrosion resistance properties. This is primarily due to the presence of chromium, which forms a protective layer on the surface of the steel, preventing oxidation and corrosion. Additionally, special steel alloys may contain other elements such as nickel, molybdenum, and titanium, further enhancing their corrosion resistance. These properties make special steel highly suitable for various applications in industries such as construction, automotive, and aerospace, where resistance to corrosion is essential for long-term durability and performance.
Q:Can special steel be used in the computer manufacturing industry?
Yes, special steel can be used in the computer manufacturing industry. Special steel, known for its enhanced strength, durability, and resistance to corrosion, can be utilized in various components of computer manufacturing. This includes using special steel alloys for computer casings, structural frames, heat sinks, and other critical components that require high strength and reliability. The use of special steel in the computer manufacturing industry ensures the longevity and performance of computer systems.
Q:How does special steel perform in high-temperature fatigue?
Special steel is renowned for its outstanding performance in conditions of high-temperature fatigue. When exposed to elevated temperatures, special steel demonstrates qualities such as remarkable strength, exceptional resistance to creep, and superior thermal stability. These characteristics render it highly dependable and capable of enduring extended periods of exposure to extreme temperatures without significant deterioration in performance. One of the key factors contributing to special steel's exceptional performance in high-temperature fatigue is its distinct composition. Typically, it contains alloying elements like chromium, molybdenum, and vanadium, which enhance its strength at high temperatures and resistance to thermal fatigue. These alloying elements create stable carbides and nitrides that aid in preserving the material's structural integrity even under intense heat and cyclic loading. Furthermore, special steel undergoes specialized heat treatment procedures, such as quenching and tempering, to further enhance its properties in high-temperature fatigue. These treatments augment the material's microstructure, resulting in increased strength, toughness, and resistance to thermal fatigue. In conditions of high-temperature fatigue, special steel exhibits remarkable fatigue strength and durability, even when subjected to cyclic loading at elevated temperatures. Its high-temperature fatigue limit surpasses that of regular steel significantly, enabling it to withstand repetitive stress and strain without experiencing premature failure. This makes special steel an ideal choice for applications involving high-temperature environments, such as gas turbines, heat exchangers, and aerospace components. To conclude, special steel delivers exceptional performance in high-temperature fatigue conditions due to its unique composition, specialized heat treatment processes, and superior mechanical properties. Its high strength, resistance to creep, and thermal stability make it a reliable and long-lasting material for applications requiring prolonged exposure to extreme temperatures.
Q:What are the different nuclear grades of special steel?
The different nuclear grades of special steel refer to specific types of steel that are used in the nuclear industry to meet stringent requirements for safety, reliability, and performance. These grades are designed to withstand the harsh conditions of nuclear power plants and other nuclear facilities. There are several nuclear grades of special steel, each with its own unique characteristics and applications. Some of the commonly used grades include: 1. 304/304L stainless steel: This grade is widely used in nuclear applications due to its excellent corrosion resistance and high strength at elevated temperatures. It is often used in the construction of reactor vessels, heat exchangers, and piping systems. 2. 316/316L stainless steel: Similar to 304/304L, this grade offers superior corrosion resistance and high creep strength. It is commonly used in the construction of components exposed to corrosive environments, such as coolant systems, steam generators, and fuel handling equipment. 3. 321 stainless steel: This grade contains titanium, which stabilizes the steel against sensitization during welding. It is often used in nuclear applications where welding is required, such as piping systems and pressure vessels. 4. Duplex stainless steels: These grades, such as 2205 and 2507, offer a combination of high strength and excellent corrosion resistance. They are commonly used in nuclear applications involving highly corrosive environments, such as seawater-cooled systems and containment structures. 5. Low alloy steels: These steels, such as A533B and A508, are used in the construction of reactor pressure vessels due to their high strength and toughness. These grades are specifically designed to withstand the extreme conditions within a nuclear reactor. It is important to note that the selection of the appropriate nuclear grade of special steel depends on the specific application, considering factors such as temperature, pressure, corrosion resistance, and mechanical properties. These grades undergo rigorous testing and quality control measures to ensure their suitability for use in the nuclear industry.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords