• Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar System 1
  • Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar System 2
  • Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar System 3
  • Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar System 4
  • Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar System 5
  • Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar System 6
Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar

Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
3 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Carbon Steel
Shape:
Steel Flat Bar

Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar

Details of  Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar

Name

Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar

Shape

Flat Bar

Standard

GB/ASTM/SAE/AISI/DIN/JIS/EN/BS

Surface Treatment:

Black/Peeling/Polished/Machined  

Delivery Condition:

Hot Rolled or Forged/Peeled or Black Surface

Test

SGS/UT 100% Elements Testing

Certificate:

ISO/Mill Certificate

Service:

24 hours online service /

more than 20 years trading and manufacture 

Quality Assurance:

the third party inspection, such as SGS, BV, TUV…etc. is acceptable

Packaging Details:

Seaworthy Packaging or as per customer's packing instruction

steel flat bar grade

A36, Q235, Q195, SS400, St37-2

steel flat bar standard

GB, ASTM, AISI, EN, JIS

steel flat bar thickness

1.8mm-17.75mm

steel flat bar width

10mm-870mm

steel flat bar length

6m, 9m, 12m or as customer requirement

steel flat bar technique

Slitting hot rolled steel coil

 

Specification of Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar

Width

Thickness

Length

Theoretical Weight

(mm)

(mm)

(m)

        (kg/m)

20

2

6/9/12

0.31

20

2.5

6/9/12

0.39

20

2.75

6/9/12

0.43

25

2.5

6/9/12

0.49

25

3.75

6/9/12

0.74

30

2.5

6/9/12

0.59

30

3.5

6/9/12

0.82

30

9.75

6/9/12

2.3

40

3.5

6/9/12

1.1

40

4.75

6/9/12

1.5

40

11.75

6/9/12

3.69

50

2.75

6/9/12

1.08

50

4.5

6/9/12

1.77

50

9.75

6/9/12

3.83

60

5.5

6/9/12

2.6

60

7.5

6/9/12

3.53

60

11.5

6/9/12

5.42

80

5.5

6/9/12

3.45

80

7.5

6/9/12

4.71

80

11.75

6/9/12

7.38

100

3.25

6/9/12

2.55

100

4.75

6/9/12

3.73

100

7.5

6/9/12

5.89

120

9.75

6/9/12

9.18

120

11.75

6/9/12

11.07

150

9.75

6/9/12

11.48

150

11.5

6/9/12

13.54

150

13.5

6/9/12

15.9

160

11.75

6/9/12

14.76

200

9.5

6/9/12

14.92

250

5.75

6/9/12

11.28

340

7.75

6/9/12

20.68

 

CNBM Introduction of Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar Supplier

CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.

With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.

Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar

 Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar

After-sale service

  • CNBM provides the services and support you need for

    every step of our cooperation. We’re the business partners you

    can trust; you can relax and get on with doing business.

  • For any problem, please kindly contact us at any your

    convenient time, we’ll reply you in our first priority within 24 hours

Advantages  

 

  • Industry experience over 20 years.

  • Shipment of goods -More than 70 countries worldwide.

  • The most convenient transport and prompt delivery.

  • Competitive price with best service.

  • High technical production line with top quality products.

  • High reputation based on best quality products.

     

 

Packaging & Delivery  Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar Supplier

Packaging Detail

Sea worthy packing /as per customer's packing instruction

Delivery Detail

15 ~ 40 days after receiving the deposit

 

Products Show

Hot Rolled Grade ASTM A36_S235JR_SS400 Steel Flat Bar

FAQ:   

Are you a trading company or manufacturer?

Manufacturer

What’s the MOQ?

3 metric ton

What’s your delivery time? 

15-35 days after downpayment received

Do you Accept OEM service?

Yes

what’s your delivery terms?

FOB/CFR/CIF

What's the Payment Terms?

30% as deposit,70% before shipment by T/T

Western Union acceptable for small amount.

L/C acceptable for large amount.

Scrow ,Paybal,Alipay are also ok

Why  choose  us?

Chose happens because of quality, then price, We can give you both.

Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals.

What's your available port of Shipment?

Main Port, China

What’s your featured  services?

Our service formula: good quality+ good price+ good service=customer's trust

 

Where are your Market?

Covering more than 160 countries in the world

 

Q:What are the main applications of special steel in the energy storage industry?
Special steel is extensively used in the energy storage industry for various applications. It is primarily employed in the manufacturing of storage tanks and containers, ensuring the safe storage and transport of energy sources such as liquefied natural gas (LNG) or compressed hydrogen. Special steel is also utilized in the construction of battery casings and components, providing durability and protection for energy storage systems. Additionally, special steel is crucial in the fabrication of critical infrastructure, such as pipelines and transmission towers, which play a vital role in the efficient distribution of energy. Overall, special steel serves as a fundamental material in the energy storage industry, enabling the reliable and secure storage, transportation, and utilization of various energy sources.
Q:How is special steel used in the production of conveyor belts?
Special steel is used in the production of conveyor belts primarily for their strength and durability. It is commonly used in the construction of belt pulleys and rollers, which are essential components of conveyor systems. The special steel used in these parts ensures that they can withstand heavy loads, resist wear and tear, and maintain their shape and functionality over long periods of use.
Q:What are the different cutting tools used for machining special steel?
Some different cutting tools used for machining special steel include carbide inserts, high-speed steel (HSS) end mills, diamond-coated tools, and ceramic cutting tools. These tools are designed to withstand the high hardness and heat resistance of special steels, ensuring precise and efficient cutting operations.
Q:How does hot rolling affect the microstructure of special steel?
Hot rolling is a metalworking process that involves heating the steel above its recrystallization temperature and then passing it through a series of rollers to reduce its thickness. This process has a significant impact on the microstructure of special steel. During hot rolling, the high temperature causes the grains in the steel to recrystallize, removing any existing defects and creating a more uniform and refined grain structure. This recrystallization process results in smaller and more equiaxed grains, which enhances the mechanical properties of the steel. Additionally, hot rolling promotes the formation of certain microstructural features such as dislocation cells and subgrains. These features help to increase the strength and toughness of the steel, making it suitable for various applications that require high performance and durability. Moreover, hot rolling can also lead to the precipitation of certain alloying elements within the steel. These precipitates can play a crucial role in enhancing specific properties of the steel, such as corrosion resistance or high-temperature strength. Overall, hot rolling has a profound influence on the microstructure of special steel. It refines the grain structure, promotes the formation of beneficial microstructural features, and facilitates the precipitation of alloying elements. These microstructural changes contribute to the improved mechanical properties and performance of the steel, making it a preferred choice in industries such as automotive, aerospace, and construction.
Q:How does special steel perform in oil and gas applications?
Due to its outstanding performance and superior properties, special steel is highly sought after and extensively used in oil and gas applications. The exceptional resistance to corrosion exhibited by special steel is crucial in environments where oil and gas are present, as it helps prevent equipment failure and guarantees the longevity and reliability of the components. In addition, special steel possesses remarkable strength and durability, making it capable of withstanding extreme conditions such as high pressure and temperature. This strength enables the steel to endure the demanding and harsh environments often encountered in oil and gas applications. Moreover, special steel retains its mechanical properties even at elevated temperatures, ensuring stability and reliability in these challenging conditions. Another notable advantage of special steel is its excellent weldability. This property allows for easy fabrication and assembly of components, reducing production time and costs. It also ensures the integrity of the structures and equipment used in oil and gas applications. Furthermore, special steel offers exceptional resistance to fatigue and wear, which are commonly encountered issues in oil and gas operations. The ability of special steel to withstand cyclic loading and abrasive conditions guarantees the longevity and reliability of the components, thereby reducing maintenance and replacement costs. Overall, special steel performs exceptionally well in oil and gas applications due to its corrosion resistance, high strength, durability, weldability, and resistance to fatigue and wear. These superior properties make it the preferred choice for critical components, ensuring the efficiency, safety, and reliability of oil and gas operations.
Q:How is special steel used in the packaging supply chain?
Special steel is used in the packaging supply chain for various purposes such as manufacturing machinery, tools, and equipment needed for packaging processes. It is used to create durable and reliable components like blades, cutters, and molds, ensuring precise and efficient packaging operations. Additionally, special steel can be utilized for constructing robust packaging materials like containers, pallets, and racks, providing strength and stability during transportation and storage.
Q:How does cryogenic treatment affect the toughness of special steel?
Cryogenic treatment significantly improves the toughness of special steel. It involves subjecting the steel to extremely low temperatures, typically below -150°C, resulting in the transformation of retained austenite into martensite. This process enhances the steel's microstructure, reducing residual stresses and increasing its hardness, wear resistance, and overall toughness. The cryogenic treatment also refines the grain structure, leading to improved mechanical properties and increased resistance to fatigue and cracking.
Q:How does special steel contribute to sustainability efforts?
Special steel is a key player in sustainability initiatives for various reasons. To begin with, its durability and long lifespan make it highly sought after. It boasts exceptional resistance to corrosion, wear, and tear, enabling it to endure harsh conditions and heavy use. By prolonging the lifespan of products made with special steel, the need for frequent replacements is minimized. Consequently, this conserves natural resources and diminishes environmental impact by reducing resource consumption and waste generation. Furthermore, special steel is renowned for its recyclability. It can be melted down and reprocessed multiple times without compromising its properties or quality. This quality makes it a valuable material within the circular economy, where resources are reused and recycled to reduce reliance on virgin materials. The recycling process for special steel requires less energy compared to producing steel from raw materials, leading to lower greenhouse gas emissions and energy consumption. Moreover, special steel finds extensive application in energy-efficient endeavors. For instance, it is heavily employed in the manufacturing of wind turbines, which produce renewable energy. By providing a material capable of withstanding the demanding conditions of wind turbines, special steel contributes to the expansion of clean energy sources. This, in turn, reduces dependence on fossil fuels, curbs carbon emissions, and aids in mitigating climate change. Lastly, special steel plays a vital role in the transportation industry. It is utilized in the production of lightweight, fuel-efficient vehicles like electric cars. Through reducing vehicle weight, special steel improves fuel efficiency and diminishes greenhouse gas emissions. Additionally, special steel is instrumental in constructing infrastructure for electric vehicle charging stations, facilitating the transition to cleaner transportation systems. In conclusion, special steel's contributions to sustainability are extensive. Its properties and applications promote durability, recyclability, energy efficiency, and clean energy generation. By conserving resources, reducing waste, and combating climate change, special steel emerges as a crucial material in shaping a more sustainable future.
Q:What are the different methods of strengthening special steel?
Special steel can be strengthened in various ways, each with its own benefits and uses. Heat treatment is a common method, involving heating the steel to a specific temperature and then cooling it rapidly or slowly, depending on the desired result. This can involve processes such as quenching, tempering, and annealing, which change the steel's microstructure to enhance its mechanical properties. Another method is alloying, where different elements are added to the steel to improve its strength. For instance, adding elements like chromium, nickel, or molybdenum can enhance the steel's resistance to corrosion, while vanadium or tungsten can increase its hardness and wear resistance. Cold working is another technique used to strengthen special steel, involving deforming the steel at room temperature through rolling, forging, or drawing. This aligns the steel's crystalline structure, boosting its strength and hardness. Moreover, surface treatments can be employed to enhance the strength of special steel. Techniques like carburizing, nitriding, or plating can introduce a hardened layer or coating on the steel's surface, improving its wear resistance and durability. Each method has its own advantages and can be customized to meet specific requirements and applications. By combining different strengthening techniques, special steel can be tailored to fulfill a wide range of industrial needs, making it a reliable and versatile material.
Q:What are the different methods for improving the toughness of special steel?
There are several methods that can be employed to enhance the toughness of special steel. One of the most effective techniques is through the process of alloying. By adding certain elements such as nickel, chromium, or molybdenum to the steel composition, the toughness can be significantly improved. These alloying elements help to increase the strength and resistance to cracking and fracture. Another method is through heat treatment processes. For instance, quenching and tempering can be employed to improve the toughness of the steel. Quenching involves rapidly cooling the steel from a high temperature to room temperature, which results in a hardened structure. Tempering then follows, where the steel is reheated to a specific temperature and then slowly cooled. This process helps to relieve internal stresses and increase the toughness of the steel. Furthermore, refining the microstructure of the steel can also enhance its toughness. Processes like grain refinement, which involves reducing the size of the grains in the steel, can lead to improved toughness. This is because smaller grains help to inhibit the propagation of cracks, making the steel more resistant to fracture. Lastly, special steel can undergo processes like shot peening or surface hardening to improve its toughness. Shot peening involves bombarding the surface of the steel with small metallic or ceramic particles, which induces compressive stresses and improves resistance to crack initiation. Surface hardening techniques such as carburizing or nitriding can create a hardened layer on the surface of the steel, increasing its toughness and wear resistance. In conclusion, the different methods for improving the toughness of special steel include alloying, heat treatment processes, microstructure refinement, and surface treatments. Each of these techniques can be tailored to the specific requirements of the steel to achieve the desired level of toughness.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords