• Grade S235JR CNBM Carbon Steel Round Bar with High Quality System 1
  • Grade S235JR CNBM Carbon Steel Round Bar with High Quality System 2
  • Grade S235JR CNBM Carbon Steel Round Bar with High Quality System 3
  • Grade S235JR CNBM Carbon Steel Round Bar with High Quality System 4
  • Grade S235JR CNBM Carbon Steel Round Bar with High Quality System 5
Grade S235JR CNBM Carbon Steel Round Bar with High Quality

Grade S235JR CNBM Carbon Steel Round Bar with High Quality

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
3 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Carbon Steel
Shape:
Steel Round Bar

Product Description 

S235jr Steel Round Bars/round ba
Grade:SS400, A36, Q235
Size:8mm-35mm
Technique: hot rolled
Certification: CE,SGS,ISO

 

Chemical Composition

C

Si

Mn

P

S

S

0.14~0.22%

0.30

0.30~0.65

0.045

0.050

0.050

 

Application:

Mold bottom,  

Plastic mold 

Construction machinery parts

Automobile parts 

Security grills

Screens  

Construction

 

Company Information:

CNBM International Corporation is the most important trading platform of CNBM group.

Whith its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high qulity series of refractories as well as technical consultancies and logistics solutions.

 

 Packing & Delivery

1. Packaging: seaworthy package or as required 

2. Delivery: 35-45 days or based on quantity

 

Products Show

 Grade S235JR CNBM Carbon Steel Round Bar with High Quality

FAQ:

1.Your advantages?

Professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent    

customer solution proposale

2. Test & Certificate?

SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3. Factory or Trading Company?

CNBM is a trading company but we have so many protocol factories and CNBM works as a trading  department

of  these factories. Also CNBM is the holding company of many factories.

4. Payment Terms?

30% TT as deposit and 70% before delivery.

Irrevocable L/C at sight.

5. Trading Terms?

EXW, FOB, CIF, FFR, CNF

6. After-sale Service?

CNBM provides the services and support you need for every step of our cooperation. We're the business

partner you can trust.

For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.

Q:How is bearing steel used in the manufacturing of bearings?
Bearing steel is a specialized type of steel that is used in the manufacturing of bearings to ensure high performance and durability. It is specifically designed to have excellent hardness, wear resistance, and fatigue strength. Bearing steel is used to produce the inner and outer rings, as well as the rolling elements and cages of bearings. By using bearing steel, manufacturers can produce bearings that can withstand heavy loads, high speeds, and continuous rotation, ensuring smooth operation and longer lifespan of the bearings.
Q:How is special steel used in the food processing industry?
Special steel is used in the food processing industry for various applications such as manufacturing equipment, machinery, and tools. It is particularly utilized in the production of cutting blades, mixers, grinders, and other components that require high strength, durability, and resistance to corrosion. This type of steel ensures the hygienic processing of food products, maintains product quality, and meets the stringent safety standards required in the industry.
Q:What are the main applications of special steel in the medical field?
Special steel is widely used in the medical field for various applications. One of the main applications is in surgical instruments, where special steel alloys provide excellent strength, durability, and corrosion resistance. These alloys are also used in the production of medical implants, such as artificial joints and bone plates, due to their biocompatibility and ability to withstand the demanding conditions inside the human body. Additionally, special steel is utilized in medical devices like needles, catheters, and dental instruments, ensuring precision, hygiene, and reliability in these critical tools.
Q:Can special steel be recycled?
Yes, special steel can be recycled.
Q:How does special steel perform in high-stress environments?
Special steel performs exceptionally well in high-stress environments due to its unique properties. Its enhanced strength, durability, and resistance to corrosion make it highly reliable and capable of withstanding extreme conditions. This allows it to maintain its structural integrity and prevent deformation or failure, making it ideal for use in demanding industries like aerospace, oil and gas, and automotive.
Q:What are the specific requirements for special steel used in nuclear applications?
Special steel used in nuclear applications has specific requirements to ensure its suitability and safety within the highly demanding and sensitive nuclear environment. These requirements are designed to guarantee the integrity and performance of the steel in various conditions, including extreme temperatures, radiation exposure, and corrosive environments. One of the primary requirements for special steel used in nuclear applications is high strength and toughness. The steel must possess excellent mechanical properties to withstand the immense pressure and stress that it will experience during operation. This enables the steel to resist deformation, cracking, and failure, ensuring the structural integrity of nuclear components. Another crucial requirement is the ability to withstand high temperatures and thermal cycling. Nuclear reactors operate at elevated temperatures, and the steel must retain its mechanical properties even under extreme thermal conditions. This prevents any degradation or loss of strength that could compromise the safety and efficiency of the nuclear system. Furthermore, special steel used in nuclear applications must exhibit exceptional resistance to corrosion and oxidation. The nuclear environment can be highly corrosive due to the presence of various chemicals and coolants, such as water, steam, and coolant gases. The steel must possess a high level of corrosion resistance to prevent any degradation or material loss, which could lead to leaks or failures. Radiation resistance is also a critical requirement for special steel used in nuclear applications. Nuclear reactors emit ionizing radiation, which can damage the structure and properties of conventional materials. Therefore, the steel must have a high resistance to radiation-induced embrittlement and degradation, ensuring its long-term performance in a radioactive environment. Additionally, the steel used in nuclear applications must comply with strict quality control and certification standards. These standards ensure the steel's traceability, material composition, and manufacturing processes, guaranteeing its reliability and compliance with regulatory requirements. Quality control measures include non-destructive testing, ultrasonic examinations, and material certification. Overall, the specific requirements for special steel used in nuclear applications encompass high strength, toughness, thermal stability, corrosion resistance, radiation resistance, and adherence to stringent quality control standards. Meeting these requirements is crucial to ensure the safe and reliable operation of nuclear systems while mitigating potential risks associated with the nuclear environment.
Q:What are the different heat treatment furnaces used for special steel?
Special steel is commonly subjected to various heat treatment processes using different types of furnaces. Each furnace serves a specific purpose and is engineered to create the ideal heating and cooling conditions necessary for the steel to attain its desired properties. One of the furnaces employed for special steel is the annealing furnace. This furnace utilizes a technique called annealing, which entails heating the steel to a specific temperature and then gradually cooling it to enhance its softness and ductility. To prevent oxidation during the process, annealing furnaces are often equipped with controlled atmospheres. Another type of furnace utilized for special steel is the quenching furnace. Quenching is a process that involves rapidly cooling the steel to increase its hardness. Quenching furnaces are designed to provide the required cooling rate and may utilize specialized cooling mediums like oil or water to achieve the desired outcome. Tempering furnaces are also commonly employed for special steel. Tempering involves heating the steel to a specific temperature and subsequently cooling it to enhance its toughness and reduce brittleness. These furnaces enable precise temperature control throughout the tempering process. Furthermore, carburizing furnaces are utilized for special steel. Carburizing is the process of introducing carbon into the surface of the steel to enhance its hardness. Carburizing furnaces are equipped with controlled atmospheres and designed to provide the necessary temperatures and carbon-rich environments for the carburizing process. In summary, the various heat treatment furnaces used for special steel serve distinct purposes such as annealing, quenching, tempering, or carburizing. These furnaces are meticulously engineered to provide the requisite heating and cooling conditions for the steel to achieve its desired properties.
Q:How is special steel used in the production of cutting tools?
Special steel is used in the production of cutting tools due to its exceptional properties such as high hardness, toughness, and wear resistance. These qualities enable the cutting tools to effectively cut through various materials, including metal and wood, with precision and efficiency. The special steel used in the manufacturing process undergoes specific heat treatment and alloying techniques to optimize its performance and durability, making it an ideal choice for producing high-quality cutting tools.
Q:How does special steel contribute to weight reduction in manufacturing?
Special steel, engineered specifically for various manufacturing applications, possesses certain characteristics that make it suitable. One major advantage of special steel is its ability to reduce weight in manufacturing processes. Industries that prioritize weight reduction, such as automotive, aerospace, and construction, often utilize special steel. This is because special steel has a high strength-to-weight ratio, meaning it can provide the necessary strength and performance while being lighter compared to other materials. Using special steel allows companies to achieve weight reduction in multiple ways. Firstly, the lightweight nature of special steel enables the production of significantly lighter components and structures compared to conventional materials. This reduction in weight offers several benefits, including improved fuel efficiency in automobiles, increased payload capacity in aircraft, and easier handling and installation in construction projects. Moreover, special steel's high strength-to-weight ratio allows manufacturers to design and produce thinner yet equally strong components. This not only reduces overall weight but also optimizes material usage, leading to cost savings and a more sustainable manufacturing process. Additionally, special steel's unique properties, such as excellent formability and weldability, facilitate the creation of complex and intricate designs that further contribute to weight reduction. This versatility enables the production of lightweight components with intricate shapes and structures, enhancing overall performance and functionality. In conclusion, special steel is crucial in reducing weight during manufacturing processes. Its high strength-to-weight ratio, lightweight nature, excellent formability, and weldability enable the production of lighter components and structures. By utilizing special steel, industries can achieve improved efficiency, performance, and sustainability in their manufacturing operations.
Q:How are copper alloys used in electrical applications?
Copper alloys are widely used in electrical applications due to their excellent electrical conductivity and thermal conductivity properties. These alloys, such as brass and bronze, are used in the production of electrical connectors, terminals, and conductors. They are also utilized in circuit breakers, switches, and motors due to their high strength and corrosion resistance. Additionally, copper alloys are used in the manufacturing of electrical cables and wiring systems, ensuring efficient transmission of electricity with minimal power loss.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords