• Special Steel D3M Mould Steel Alloy Steel System 1
  • Special Steel D3M Mould Steel Alloy Steel System 2
  • Special Steel D3M Mould Steel Alloy Steel System 3
Special Steel D3M Mould Steel Alloy Steel

Special Steel D3M Mould Steel Alloy Steel

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Alloy Steel
Shape:
Steel Round Bar
Standard:
AISI,JIS,GB,BS,DIN,API,EN,ASTM
Thickness:
as required
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Extruded,EFW,Spring
Shape:
U Channel,Square,C Channel,Hexagonal,Round
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Length:
as required
Net Weight:
as required

Chemical Composition(GB %)

CSiMnCrVSP
1.40.350.358.000.15≤0.030≤0.030

 

Available Size

Rolled flat steel12-90mm×205-610mm×L

 

Heat Treatment

ItemTemperature℃Hardness
Anneal850-870≤255HB
Quenching920-98064-66HRC
Tempering 20061-63HRC

 

Characterstics

1.New type of chromium containing high carbon cold working die steel 
2.Better hardening ability and high abrasion resistance 

 

Applications:  Suitable for various codl working dies with higher abrasion resistance

Product Show:

.jpg

Workshop Show:

Special Steel D3M Mould Steel Alloy Steel

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

4, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

6, After-sale Service?

    WE provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.


Q:What are the different surface protection methods for special steel?
There are several surface protection methods available for special steel, each with its own advantages and applications. Here are some of the most common methods: 1. Coating: Coating is a widely used method to protect the surface of special steel. This can involve applying a layer of paint, powder coating, or electroplating. Coatings provide a barrier between the steel and the environment, preventing corrosion and enhancing the aesthetics of the steel surface. 2. Galvanization: Galvanization involves coating the special steel with a layer of zinc through a process called hot-dip galvanizing. This method provides excellent corrosion resistance and is commonly used for outdoor structures and equipment exposed to harsh environments. 3. Passivation: Passivation is a chemical process that removes surface contaminants and forms a protective oxide layer on the special steel's surface. This method improves the steel's resistance to corrosion and is often used for stainless steel. 4. Nitriding: Nitriding is a heat-treatment process that diffuses nitrogen into the surface of the special steel, forming a hard and wear-resistant layer. This method enhances the steel's durability, resistance to fatigue, and corrosion resistance, making it suitable for applications involving heavy loads or abrasive environments. 5. PVD and CVD coatings: Physical Vapor Deposition (PVD) and Chemical Vapor Deposition (CVD) are methods used to deposit thin films of various materials onto the special steel surface. These coatings can provide enhanced hardness, wear resistance, and low friction properties, making them ideal for cutting tools, molds, and high-performance applications. 6. Shot peening: Shot peening is a mechanical surface treatment method that involves bombarding the special steel surface with small spherical particles. This process induces compressive stresses in the steel, improving its fatigue life, resistance to stress corrosion cracking, and wear resistance. 7. Anodizing: Anodizing is a process used primarily for aluminum, but it can also be applied to some special steel alloys. By creating an oxide layer on the surface, anodizing improves corrosion resistance and allows for the application of decorative finishes. Each of these surface protection methods offers unique properties and benefits, and the choice of method depends on the specific requirements of the special steel application.
Q:What are the different construction grades of special steel?
There are several different construction grades of special steel, including but not limited to ASTM A36, ASTM A572, ASTM A514, and ASTM A588. These grades vary in their mechanical properties and are specifically designed to meet different construction requirements, such as strength, durability, or corrosion resistance.
Q:How does special steel perform in terms of corrosion resistance?
Special steel has excellent corrosion resistance due to its high content of alloying elements, such as chromium, nickel, and molybdenum. These elements form a protective layer on the surface of the steel, preventing corrosive substances from reaching the underlying metal. Additionally, special steel can be further enhanced with surface treatments or coatings to enhance its resistance to corrosion in harsh environments.
Q:What are the different methods of surface polishing for special steel?
Some of the different methods of surface polishing for special steel include mechanical polishing, chemical polishing, electropolishing, and abrasive blasting. Mechanical polishing involves using abrasive materials like sandpaper or polishing wheels to remove imperfections and create a smoother surface. Chemical polishing uses chemical solutions to dissolve a thin layer of the steel's surface, resulting in a polished finish. Electropolishing is an electrochemical process that removes surface material through the application of an electric current, resulting in a smooth and shiny surface. Abrasive blasting, also known as sandblasting, involves propelling abrasive particles at high speeds to remove rust, scale, or other surface contaminants, leaving a polished surface.
Q:What are the advancements and trends in the field of special steel?
Recent years have seen remarkable progress and emerging patterns in the field of special steel, which have brought about revolutionary changes in various industries. The primary driving force behind these advancements is the increasing demand for high-performance materials in critical applications such as aerospace, automotive, energy, and construction. One of the major breakthroughs in the field of special steel is the development of advanced manufacturing techniques. Conventional steel production methods have been replaced by more efficient processes, such as electric arc furnaces and vacuum induction melting, resulting in improved steel quality and enhanced mechanical properties. These advancements have made it possible to produce special steels with exceptional strength, corrosion resistance, and heat resistance. Another significant trend in the field of special steel is the emergence of new alloy compositions. Researchers and manufacturers are continuously exploring and developing innovative alloying elements to enhance the properties of special steels. For example, the addition of elements like chromium, molybdenum, and vanadium has led to the creation of stainless steels with outstanding resistance to corrosion and oxidation. Furthermore, advancements in heat treatment processes have also been witnessed in the field of special steel. By utilizing advanced heat treatment techniques such as quenching and tempering, austempering, and martempering, special steels can achieve the desired hardness, toughness, and dimensional stability. These advancements have significantly broadened the range of applications for special steels, allowing them to be used in critical components that operate under extreme conditions. In addition to the progress in manufacturing and alloy compositions, there is a growing inclination towards the development of environmentally friendly special steels. With increasing concerns about sustainability and carbon footprint, researchers and manufacturers are focusing on reducing the environmental impact of steel production. This has resulted in the creation of special steels with lower carbon content, as well as the implementation of energy-efficient manufacturing processes. Moreover, the field of special steel is witnessing the integration of digital technologies and automation. The utilization of artificial intelligence, machine learning, and data analytics enables manufacturers to optimize production processes, improve quality control, and reduce costs. This shift towards Industry 4.0 is transforming the production and utilization of special steel, ensuring greater efficiency and precision in the manufacturing process. In conclusion, the field of special steel is experiencing significant advancements and trends that are fostering innovation in various industries. The development of advanced manufacturing techniques, new alloy compositions, improved heat treatment processes, environmentally friendly production methods, and the integration of digital technologies are revolutionizing the properties and applications of special steel. These advancements have not only enhanced the performance and durability of special steel but have also opened up new possibilities for its utilization in critical applications.
Q:Can special steel be used in the agricultural equipment manufacturing industry?
Yes, special steel can be used in the agricultural equipment manufacturing industry. Special steel alloys have properties such as high strength, durability, and resistance to corrosion, which make them suitable for various components and machinery used in agriculture. These include plows, harvesters, tractors, and other farming equipment that require robust materials to withstand harsh conditions and heavy loads.
Q:What is the hardness range of special steel?
The hardness range of special steel can vary depending on the specific type and composition, but it typically falls within the range of 50 to 65 HRC (Rockwell Hardness Scale).
Q:Can special steel be used in the production of gears?
Yes, special steel can be used in the production of gears. Special steel is often chosen for gear manufacturing due to its high strength, durability, and resistance to wear and fatigue. It allows for the production of gears that can withstand heavy loads, high speeds, and harsh operating conditions.
Q:What are the different non-destructive testing methods used for special steel?
There are several non-destructive testing methods used for special steel, including ultrasonic testing, magnetic particle testing, liquid penetrant testing, radiographic testing, and eddy current testing. These methods help to detect any defects or flaws in the steel without causing any damage. Ultrasonic testing uses high-frequency sound waves to evaluate the internal structure of the steel, while magnetic particle testing and liquid penetrant testing are used to detect surface defects through the use of magnetic fields and dye penetrants, respectively. Radiographic testing involves the use of X-rays or gamma rays to examine the internal structure of the steel. Eddy current testing, on the other hand, uses electromagnetic induction to detect surface or near-surface defects. Overall, these non-destructive testing methods play a crucial role in ensuring the quality and integrity of special steel.
Q:How does special steel contribute to improving product quality?
Special steel contributes to improving product quality in several ways. Firstly, it offers superior strength and durability compared to regular steel, making it ideal for applications that require high performance and reliability. This ensures that products made with special steel will have a longer lifespan and reduced chances of failure, thereby enhancing overall quality. Additionally, special steel can be tailored to have specific properties like corrosion resistance, heat resistance, or magnetic properties, which are crucial in various industries such as automotive, aerospace, and medical. By using special steel, manufacturers can produce products that meet specific performance requirements, resulting in improved quality and customer satisfaction.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords