• Fireclay Brick for Blast Furnace Hot Blast Furnace  Monolithic Refractory RN-40 RN-42 System 1
  • Fireclay Brick for Blast Furnace Hot Blast Furnace  Monolithic Refractory RN-40 RN-42 System 2
Fireclay Brick for Blast Furnace Hot Blast Furnace  Monolithic Refractory RN-40 RN-42

Fireclay Brick for Blast Furnace Hot Blast Furnace Monolithic Refractory RN-40 RN-42

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
24 m.t.
Supply Capability:
6000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

-Fireclay Bricks for Blast Furnace

Fireclay bricks for blast furnaces help to maintain the integrity of blast furnace.

Those fireclay bricks can withstand long-time corrosion of slag and chemical.

Besides, the fire clay refractory brick can reduce the deposition of carbon in the pores, which avoids brick expansion and loose damage during use.

 

-Fire Clay Bricks for Hot Blast Stoves

Fireclay bricks for hot blast stoves have great resistance to thermal shock, high load-bearing capacity, and minimal creep.

This kind of bricks used in the chamber and walls of hot blast stoves.

Q:How do monolithic refractories prevent thermal radiation in the iron and steel industry?
Monolithic refractories play a crucial role in preventing thermal radiation in the iron and steel industry. Thermal radiation refers to the transfer of heat energy through electromagnetic waves, and it can be a significant challenge in this industry due to the high temperatures involved. Monolithic refractories, which are single-piece refractory materials, are designed to have excellent thermal insulation properties. They have low thermal conductivity, which means they are not good conductors of heat. This property allows them to act as a barrier against thermal radiation. When used in the iron and steel industry, monolithic refractories are typically applied as linings in furnaces, ladles, and other equipment that are exposed to extremely high temperatures. These linings serve as a protective layer, preventing the heat from escaping and reducing the amount of thermal radiation emitted. Additionally, monolithic refractories have high emissivity, which refers to their ability to absorb and re-emit thermal radiation. This property allows them to effectively capture and contain the heat within the equipment, minimizing the amount of radiation that escapes into the surroundings. By preventing thermal radiation, monolithic refractories help to maintain the desired temperatures within the iron and steel production process. This is crucial for achieving efficient and controlled operations, as well as ensuring the quality of the final products. Furthermore, the use of monolithic refractories in the iron and steel industry also contributes to energy savings. By reducing the heat loss through thermal radiation, less energy is required to maintain the desired temperatures, resulting in lower energy consumption and cost savings. In conclusion, monolithic refractories are essential in preventing thermal radiation in the iron and steel industry. Their excellent thermal insulation properties, low thermal conductivity, and high emissivity make them effective barriers against heat transfer through radiation. By minimizing heat loss and ensuring controlled temperatures, monolithic refractories contribute to efficient operations, high-quality products, and energy savings.
Q:What are the latest advancements in monolithic refractories for the iron and steel industry?
Enhanced properties have been achieved in the latest advancements of monolithic refractories for the iron and steel industry. These advancements are aimed at withstanding the extreme temperatures and harsh conditions associated with iron and steel production processes. One notable advancement is the utilization of advanced bonding systems that offer exceptional strength and resistance to thermal shock. These systems, including nano-bonding technology, contribute to the overall improvement in the performance and durability of monolithic refractories. Another significant development is the introduction of low cement castables. These castables contain a reduced amount of cement, resulting in enhanced high-temperature strength and erosion resistance. This advancement proves particularly valuable in applications within the iron and steel industry where thermal cycling and mechanical stress are common. Furthermore, the composition of monolithic refractories has seen advancements. The incorporation of advanced raw materials, such as high-quality aggregates and additives, has led to improved thermal conductivity, corrosion resistance, and thermal insulation properties. These developments allow for more efficient and sustainable iron and steel production processes. Additionally, recent advancements have been focused on the development of self-flow castables. These castables possess excellent flowability, facilitating easy installation and maintenance of refractory linings. This advancement not only reduces installation time and costs but also ensures improved lining performance. In conclusion, the latest advancements in monolithic refractories for the iron and steel industry have resulted in improved performance, durability, and efficiency. These advancements enable the industry to enhance its production processes, minimize downtime, and increase overall productivity.
Q:How do monolithic refractories resist corrosion and erosion in iron and steel applications?
Monolithic refractories are highly resilient and effective in resisting corrosion and erosion in iron and steel applications. These refractories are composed of a single, homogeneous material, unlike traditional refractory bricks which are made up of multiple components. This monolithic nature provides several key advantages in terms of corrosion and erosion resistance. One of the primary ways monolithic refractories combat corrosion is through their low porosity. These materials have a minimal amount of interconnected pores, which prevents corrosive agents such as molten metal or slag from infiltrating the refractory structure. As a result, the likelihood of chemical reactions that cause corrosion is significantly reduced. Additionally, monolithic refractories exhibit excellent resistance to thermal shock. In iron and steel applications, rapid temperature changes are common, which can lead to mechanical stress and cracking of the refractory lining. However, monolithic refractories have high thermal conductivity and low thermal expansion, allowing them to withstand thermal shock without compromising their integrity. This characteristic enables them to resist erosion caused by the flow of molten metal or slag. Furthermore, monolithic refractories are highly durable and have good mechanical strength. This property enables them to withstand the abrasive forces often encountered in iron and steel applications. The refractory lining in these environments can be subject to intense mechanical impact, vibrations, and abrasive wear due to the movement of materials and equipment. Monolithic refractories' ability to resist erosion ensures their longevity and reliability in such harsh conditions. In summary, monolithic refractories resist corrosion and erosion in iron and steel applications through their low porosity, excellent resistance to thermal shock, and high mechanical strength. These qualities make them a preferred choice for lining furnaces, ladles, and other equipment used in the production of iron and steel.
Q:How do monolithic refractories withstand thermal cycling in the iron and steel industry?
Monolithic refractories are designed to withstand thermal cycling in the iron and steel industry due to their unique composition and properties. These refractories are made from a single, continuous material, unlike traditional refractory bricks that are made by stacking individual bricks together. One of the main reasons monolithic refractories are able to withstand thermal cycling is their ability to expand and contract without cracking or damage. This is due to their high thermal shock resistance, which is a measure of their ability to withstand rapid temperature changes. Monolithic refractories are specially formulated to have low thermal conductivity, allowing them to resist the transfer of heat and minimize thermal gradients within the material. In addition, monolithic refractories have excellent thermal stability, which means they can maintain their structural integrity and mechanical strength even at high temperatures. This is crucial in the iron and steel industry, where temperatures can reach extreme levels. The refractories are able to withstand repeated heating and cooling cycles without undergoing significant structural changes or degradation. Furthermore, monolithic refractories have good corrosion resistance, which is important in an environment where they come into contact with molten metal and various chemical agents. Their composition and special additives help to protect the refractory material from chemical attack, preventing erosion and prolonging their lifespan. The manufacturing process of monolithic refractories allows for easy installation and repair, as they can be applied as a liquid or a semi-liquid mixture. This reduces the risk of joints or weak points that could lead to thermal stress or failure during thermal cycling. Overall, the combination of high thermal shock resistance, low thermal conductivity, excellent thermal stability, corrosion resistance, and easy installation makes monolithic refractories highly durable and capable of withstanding the severe thermal cycling conditions in the iron and steel industry.
Q:How do monolithic refractories enhance the performance of ladle and tundish covers?
Monolithic refractories enhance the performance of ladle and tundish covers by providing high thermal conductivity, excellent resistance to thermal shock, and superior mechanical strength. These properties ensure efficient heat insulation, minimize heat loss, and prevent cracking or damage due to rapid temperature changes. Additionally, monolithic refractories offer good corrosion resistance, prolonging the lifespan of the ladle and tundish covers and improving their overall performance.
Q:How can the lifespan of monolithic refractories be extended in the iron and steel industry?
The lifespan of monolithic refractories can be extended in the iron and steel industry through proper installation, regular maintenance, and implementing effective refractory management practices. This includes using high-quality refractory materials, ensuring precise installation techniques, monitoring and controlling operating conditions, conducting regular inspections, and promptly addressing any signs of wear or damage. Additionally, optimizing heating and cooling cycles, implementing appropriate refractory lining designs, and incorporating advanced technologies can further enhance the longevity of monolithic refractories in this industry.
Q:What are the main factors affecting the thermal conductivity of monolithic refractories?
The main factors affecting the thermal conductivity of monolithic refractories are the composition and structure of the refractory material, the porosity and density of the material, the presence of any impurities or defects, and the temperature and pressure conditions at which the refractory is being used.
Q:What are the key properties of patching mixes used for monolithic refractory repairs?
The key properties required for patching mixes used in the repair of monolithic refractories include: 1. High temperature resistance: The patching mixes should have the ability to withstand high temperatures without compromising their structural integrity. They must be capable of enduring temperatures ranging from 2000 to 3000 degrees Fahrenheit. 2. Chemical resistance: These patching mixes should be resistant to chemical reactions that occur in the presence of molten metals, slag, or other corrosive substances. They should not deteriorate or react with these materials, ensuring the longevity of the repaired refractory. 3. Thermal shock resistance: The patching mixes must have the ability to withstand sudden and extreme temperature changes without cracking or spalling. Refractory linings are often subjected to intense thermal cycling, and the patching material should be able to endure these conditions without failure. 4. Adhesion: The patching mixes should possess excellent adhesion properties to create a strong bond with the existing refractory material. This is crucial to prevent any separation or detachment of the patching material, which could result in further damage or failure. 5. Workability: The patching mixes should have good workability, allowing for easy and efficient application. They should be easily moldable and capable of effectively filling cracks, gaps, or damaged areas. 6. Setting and curing time: The patching mixes should have a reasonable setting and curing time. They should be able to harden quickly to minimize downtime during repairs, while also providing sufficient time for proper application and shaping. 7. Density and porosity: The patching material should have an appropriate density and porosity to resist penetration by molten metal or slag. Low porosity ensures that the repaired refractory maintains its thermal insulation properties. 8. Mechanical strength: The patching mixes should exhibit adequate mechanical strength to withstand physical stresses, such as abrasion or impact, that may occur during operation. 9. Compatibility: It is important that the patching mixes are compatible with the existing refractory material to ensure a seamless integration and prevent any potential chemical reactions or incompatibilities that could compromise the repair. By considering these key properties, patching mixes used for monolithic refractory repairs can effectively restore the integrity and performance of refractory linings, prolonging their lifespan and ensuring efficient and safe operation in high-temperature environments.
Q:What are monolithic refractories?
Monolithic refractories are a type of heat-resistant materials used to line high-temperature industrial equipment such as furnaces, kilns, and reactors. Unlike traditional refractories, which are made of pre-formed bricks or shapes, monolithic refractories are a single, solid piece that can be easily shaped and installed. They are composed of various aggregates, binders, and additives, providing excellent thermal insulation and resistance to extreme temperatures, chemical attacks, and mechanical stress. Monolithic refractories offer flexibility, cost-effectiveness, and improved installation efficiency compared to traditional brick refractories.
Q:How can the lifespan of monolithic refractories be extended?
The lifespan of monolithic refractories can be extended through proper installation techniques, regular maintenance, and careful handling.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords