Amino Tri Methylene Phosphonic acid ATMP

Ref Price:
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
6000 m.t./month

OKorder Service Pledge

Quality Product

Order On-line Tracking

Timely Delivery

OKorder Service Pledge

Credit Rating

Credit Services

Credit Purchasing

Share to:

Product Description:

Product Description:

Amino tris(methylene phosphonic acid)  / Amino Trimethylene Phosphonic Acid/ ATMP / 6419-19-8 /  C3H12NO9P3

CAS No.  6419-19-8

Molecular Formula:   N(CH2PO3H2)3                

Molecular weight:  299.05

Structural Formula:

Properties:

ATMP has excellent chelation, low threshold inhibition and lattice distortion ability. It can prevent scale formation, calcium carbonate in particular, in water system. ATMP has good chemical stability and is hard to be hydrolyzed in water system. At high concentration, it has good corrosion inhibition.

ATMP is used in industrial circulating cool water system and oilfield water pipeline in fields of thermal power plant and oil refinery plant. ATMP can decrease scale formation and inhibit corrosion of metal equipment and pipeline. ATMP can be used as chelating agent in woven and dyeing industries and as metal surface treatment agent.

The solid state of ATMP is crystal powder, soluble in water, easily deliquescence, suitable for usage in winter and freezing districts. Because of its high purity, it can be used in woven & dyeing industries and as metal surface treatment agent.

Specification:

ItemsIndex
StandardSolid
AppearanceClear, Colorless to pale yellow aqueous solutionWhite crystal powder
Active acid %50.0-51.095.0min
Chloride (as Cl-)%1.0 max1.0 max
pH value (1% solution)2.0 max2.0 max
Fe,mg/L10.0max20.0max
Density (20°C)g/cm31.31-1.35-
Colour APHA (Hazen)30.0max-

Application range&using method:

ATMP is usually used together with other organophosphoric acid, polycarboxylic acid and salt to built all organic alkaline water treatment agent. ATMP can be used in many different circulating cool water system. The recommended dosage is 5-20mg/L. As corrosion inhibitor, The recommended dosage is 20-80mg/L.

Package and Storage:

ATMP liquid: Normally In 30kg or 250kg net Plastic Drum;ATMP solid: 25kg inner liner polyethylene (PE) bag, outer plastic woven bag, or confirmed by clients request.Storage for ten months in room shady and dry place.


Safety Protection:

ATMP is Acidity, Avoid contact with eye and skin, once contacted, flush with water.

Shipping Date:  Within 7-10 workdays after receiving your deposit.


Our Service:

Own Lab and joint venture factory.

Superb r&d team;Safety standardization production.

Rich experience in export and strong logistical support.

Good relationship with many large domestic pharmaceutical factory.

Perfect service, perfect supply chain.




Send a message to us:

Remaining: 4000 characters

- Self introduction

- Required specifications

- Inquire about price/MOQ

Q:Will the catalyst change in the chemical reaction?
The role of catalyst refers to the chemical reaction in the catalytic role of the reagent, of course, the catalytic effect can be divided into two kinds, one is to speed up the progress of the reaction, one is to inhibit the progress of the reaction, the specific role of the catalyst to see the actual reaction needs.
Q:What is the principle of the catalyst?
Because the catalyst does not participate in the reaction, it can change the rate of chemical reactions without any change in itself.
Q:Catalyst and Intermediate.?
Cl is the catalyst. ClO the intermediate. The catalyst is the component which does not change in overall reaction. He forms some intermediate component(s) with the reactants. In the later reaction steps the intermediate(s) react forming the catalyst in its original state. (a) The overall order is the sum of the orders with respect to the components: n = 1 +1 = 2 (b) the unit of the rate of reaction is r [=] mol/ (Ls) (more general mol per unit time and volume) compare dimensions mol / (Ls) [=] k · mo/L · mol/L =k [=] L/(s mol) (more general unit volume per unit time and mole) (c) First reaction For elementary reaction steps the order of the reaction rate with respect to a reactant is equal to stoichiometric coefficient. Hence the rate of first reaction is: r₁ = k₁·[Cl]·[O₃] Overall rate is given by the rate determining step, while other reaction steps are in equilibrium: r = r₁ = k₁·[Cl]·[O₃] If second reaction is the rate determine step r₂ = k₂·[O]·[ClO] while reaction 1 is at equilibrium K₁ = ( [ClO]·[O₂] ) / ( [Cl]·[O₃] ) =[ClO] = K₁·( [Cl]·[O₃] ) / [O₂] the overall rate would be: r = r₂ = k₂·[O]·[ClO] = K₁·k₂·[O]·[Cl]·[O₃] / [O₂] = k·[O]·[Cl]·[O₃] / [O₂] That doesn't match the observed rate law
Q:Biological enzymes and chemical catalysts of the differences in the source
Catalyst catalytic reaction relative conditions higher, selectivity than biological enzymes
Q:Why the amount of catalyst is too small will make the chemical reaction rate slowed down
Can significantly change the reaction rate and its own chemical properties and quantity in the reaction before and after the basic material unchanged. The catalyst has a positive catalyst (i.e., accelerates the reaction rate) and a negative catalyst (i.e., reduces the reaction rate), and generally does not specifically refer to both the positive catalyst.
Q:What is the similarity between enzymes and general chemical catalysts?
(1) The enzyme is the same in many respects as a biocatalyst and a general catalyst, such as a small amount and a high catalytic efficiency. As with the general catalyst, the enzyme can only change the rate of chemical reaction and does not change the equilibrium of the chemical reaction It is possible to catalyze the activation of a large number of substrates in a short time and to reflect the high efficiency of enzyme catalysis.The enzyme can reduce the activation energy of the reaction (activation) (△ G) during the reaction, but the reaction rate is accelerated and the reaction time is reduced, but the equilibrium constant is not changed. (2) However, the enzyme is a biological macromolecule (1) Enzyme-catalyzed high efficiency: The catalytic effect of the catalyst can increase the reaction rate by 10 ^ 6 ~ 10 ^ 12 times, which is at least several times higher than that of the conventional catalyst. (2) The enzyme catalyst Highly specificity: including specificity of response, substrate specificity, chirality specificity, geometric specificity, etc., that an enzyme can only act on a certain class or a specific substance. Bond, ester bond, peptide bond and so on can be catalyzed by acid-base hydrolysis, but the hydrolysis of these chemical bonds are different, respectively, the corresponding glycosidase, esterase and peptidase, that is, they were specific (3) enzymatic reaction conditions are mild: enzymatic reaction is generally carried out in aqueous solution of pH = 5 ~ 8, the reaction temperature range is 20 ~ 40 ℃
Q:In the chemical reaction, the rate of decomposition reaction is related to the quality of the catalyst?
The catalyst can affect the reaction rate, the faster the amount of reaction or slower. Of course there are limits,
Q:Chemistry: Does the catalyst participate in the reaction?
The current theory is generally believed that the catalyst to participate in the reaction, the formation of intermediates, and then re-decomposition of intermediates to generate the catalyst, so the quality and nature of the reaction before and after the same. Experiments have shown that although the nature and quality of the catalyst remain unchanged, some of its aspects, such as morphological changes, before the reaction of massive, post-reaction powder, indirectly prove the above theory. Now high school to do the problem generally according to the theory. Such as copper oxidation of copper oxide, copper oxide and then oxidation of ethanol to acetaldehyde, itself is reduced to copper, so copper is ethanol oxidation of acetaldehyde catalyst
Q:Chemical reaction plus catalyst on the △ H no effect
Since the addition of the catalyst only accelerates the reaction process and does not have an effect on the reaction product and the reactants
Q:Could God be Discribed as a Catalyst?
It depends on the context. A catalyst for what? A catalyst being (from a scientific point of view anyway) something that speeds up the rate [of a reaction] without itself being altered. In that respect you could view God as being a catalyst for war, or religious hatred. The counter argument being that it is religion (ie. the interpretaion of God) which is the catalyst. And not to be too negative, God could be seen as a catalyst for good; many of the charitable organisations in the world are theistic in some way. Point is, I'd say that religion, rather than God himself, is the driving force. I don't believe in God, but I ain't, like, zealous about it.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range