• 45# Carbon Steel Hot Rolled Bars Forged Bars System 1
  • 45# Carbon Steel Hot Rolled Bars Forged Bars System 2
  • 45# Carbon Steel Hot Rolled Bars Forged Bars System 3
45# Carbon Steel Hot Rolled Bars Forged Bars

45# Carbon Steel Hot Rolled Bars Forged Bars

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
50000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Type:
Carbon Steel
Shape:
Steel Round Bar

45# Carbon Steel Hot Rolled Bars Forged Bars

 

Product Details:

Name:45# Carbon Steel Hot Rolled Bars Forged Bars

      Place of Origin:Liaoning,China    Brand Name:Dongbei Tegang   

      Shape:round bar                              Material: Alloy Structural Steel    

      Steel Grade: AISI 1045/JIS S45C/DIN C45/GB 45

      Size:Diameter:16mm~350mm

      Application:used in making high strengthened and wear resistant parts that works under high pressure, like axle, spring ring, axletree, cam, and steel sling etc.

 

Chemical Composition:

C

Si

Mn

Cr

Ni

Cu

P

S

0.38-0.43

0.17-0.37

0.50-0.80

≤0.25

≤0.30

≤0.35

≤0.035

≤0.035

 

Characteristics:

- High hardness, strength and toughness.

- Poor plasticity during cold deformation.

-  Medium machinability. 

- Poor weldability.

- Poor hardenability. 

- Cracks is often caused during water quenching process.

- Large parts should be in normalizing treatment.

 

Application:

45# Carbon Steel Hot Rolled Bars Forged Bars can be used to be manufactured roller, shaft, tyre, spring ring, damping spring, clutch and steel wire rope, etc.

 

Product Show:

45# Carbon Steel Hot Rolled Bars Forged Bars

45# Carbon Steel Hot Rolled Bars Forged Bars

45# Carbon Steel Hot Rolled Bars Forged Bars

 

Q:How is high-strength alloy steel used in the production of structural components?
High-strength alloy steel is commonly used in the production of structural components due to its exceptional strength-to-weight ratio. It provides superior tensile strength and toughness, making it suitable for supporting heavy loads and withstanding high stress and impact. This steel is often used in the construction of buildings, bridges, and other infrastructure, as well as in the manufacturing of machinery and vehicles. Its application helps enhance structural integrity, durability, and safety while minimizing the weight and material requirements of these components.
Q:How does special steel perform in low-temperature environments?
Special steel performs exceptionally well in low-temperature environments. It exhibits excellent toughness, high strength, and remarkable resistance to brittle fracture, which makes it suitable for various applications in extreme cold conditions. Additionally, special steel maintains its mechanical properties even at sub-zero temperatures, ensuring reliability and durability in challenging environments.
Q:Can special steel be used in the production of musical instruments?
Musical instruments can indeed benefit from the use of special steel. This type of steel, also known as tool steel or high-performance steel, has been specifically engineered to possess certain characteristics that make it suitable for specific applications. These characteristics include exceptional strength, durability, and resistance to both wear and corrosion. When it comes to musical instruments, special steel can be utilized in various components such as strings, springs, keys, valves, and reeds. For instance, piano strings are typically crafted from high-carbon steel, which provides the necessary strength and elasticity to produce the desired sound. Brass instruments like trumpets or saxophones have valves made from special steel alloys, which possess excellent corrosion resistance and can endure the repetitive movements required during play. Furthermore, special steel can also be employed in the production of instrument parts like guitar frets. Frets are metal strips embedded along the guitar's fingerboard, and they must be constructed from a material that is durable, wear-resistant, and able to maintain its shape over time. Special steel alloys, such as stainless steel or nickel-silver, are commonly chosen for this purpose. In summary, special steel brings forth a variety of properties that can improve the performance and longevity of musical instruments. With the utilization of this type of steel, manufacturers can create instruments that produce high-quality sound, withstand wear and tear more effectively, and enjoy a longer lifespan.
Q:What are the requirements for special steel used in telecommunications infrastructure?
The requirements for special steel utilized in telecommunications infrastructure encompass several aspects: 1. Elevated strength: To withstand the substantial loads and stresses imposed on the structures, it is essential for the special steel employed in telecommunications infrastructure to possess a high tensile strength. This guarantees the stability and security of the infrastructure. 2. Resistance to corrosion: Given the potential exposure to diverse environmental conditions such as moisture and chemicals, it is of utmost importance for the special steel to exhibit exceptional corrosion resistance. This safeguard protects the infrastructure from rust and deterioration, thereby extending its lifespan. 3. Favorable weldability: The special steel employed in telecommunications infrastructure should possess good weldability to facilitate the construction and installation processes. This enables the seamless joining of various components, thereby ensuring a sturdy and dependable structure. 4. Durability: The special steel must demonstrate the ability to endure the harsh conditions it may face throughout its lifetime. It should exhibit high durability to resist fatigue, impact, and other external factors that could potentially compromise the integrity of the infrastructure. 5. Lightweight nature: In addition to strength, special steel utilized in telecommunications infrastructure should also possess a lightweight quality. This characteristic enables easier transportation, handling, and installation of the components, thereby reducing costs and construction time. 6. Fire resistance: The special steel utilized in telecommunications infrastructure should possess commendable fire resistance properties to prevent the spread of fire and ensure the safety of the infrastructure and its surroundings. 7. Electrical conductivity: Telecommunications infrastructure often necessitates electrical grounding and bonding. Consequently, the special steel employed in these applications should exhibit favorable electrical conductivity properties to ensure effective grounding and minimize electrical interference. Meeting these requirements guarantees that the special steel employed in telecommunications infrastructure can provide the necessary structural integrity, longevity, and performance required to support reliable and efficient communication networks.
Q:What are the different surface hardening techniques used for special steel?
There are several different surface hardening techniques used for special steel, including case hardening, induction hardening, flame hardening, and nitriding. Case hardening involves heating the steel in the presence of a carbon-rich atmosphere to create a hardened outer layer, while induction hardening uses an electromagnetic field to heat and harden specific areas of the steel. Flame hardening involves heating the steel using a high-temperature flame, followed by quenching to achieve hardness. Nitriding is a process where the steel is exposed to nitrogen gas at high temperatures to create a hard, wear-resistant surface layer. Each technique has its own advantages and is chosen based on the specific requirements of the application.
Q:Does special steel require special machining techniques?
Yes, special steel often requires special machining techniques due to its unique properties and characteristics. It is typically harder, tougher, and more heat resistant compared to regular steel, making it more challenging to cut, shape, and form. Special machining techniques such as using high-speed tools, specific tool geometries, and advanced coolant systems may be necessary to achieve desired results and maintain the integrity of the special steel.
Q:How does special steel perform in extreme pressure conditions?
Special steel is specifically designed to perform exceptionally well in extreme pressure conditions. Due to its unique composition and manufacturing process, special steel exhibits high strength, durability, and resistance to deformation, making it ideal for applications where extreme pressures are involved. When subjected to extreme pressure conditions, special steel is able to maintain its structural integrity without undergoing significant deformations. This is due to its high tensile strength, which enables it to withstand tremendous forces without breaking or bending. Additionally, the special steel's hardness and toughness allow it to resist wear and damage caused by the intense pressure. Furthermore, special steel possesses excellent heat resistance, which is crucial in extreme pressure conditions where elevated temperatures are often present. The steel's ability to withstand high temperatures without losing its mechanical properties ensures its reliability and effectiveness even under the most demanding circumstances. Moreover, special steel has excellent corrosion resistance properties, making it suitable for use in extreme pressure conditions where exposure to corrosive substances is a concern. The steel's resistance to oxidation and other chemical reactions prevents it from deteriorating or weakening, ensuring its long-term performance and reliability. Overall, special steel performs exceptionally well in extreme pressure conditions due to its high strength, durability, resistance to deformation, heat resistance, and corrosion resistance. These properties make it a reliable and efficient choice for various industries and applications that operate under extreme pressure environments, such as oil and gas exploration, aerospace, automotive, and heavy machinery manufacturing.
Q:Can special steel be used in the mining equipment manufacturing industry?
Yes, special steel can be used in the mining equipment manufacturing industry. Special steel, such as high-strength or wear-resistant steel, is often utilized in the construction of mining equipment due to its ability to withstand harsh conditions, heavy loads, and abrasive materials encountered in the mining industry.
Q:How does special steel contribute to the efficiency of industrial equipment?
Several factors contribute to the efficiency of industrial equipment, with special steel playing a crucial role. Firstly, the use of special steel alloys offers superior strength and hardness properties compared to regular steel. This enables the construction of more durable and robust equipment, reducing the frequency of repairs or replacements. Consequently, the overall efficiency of the equipment is improved. In addition, special steel alloys demonstrate excellent resistance to heat and corrosion, making them ideal for use in high-temperature or corrosive environments. This ensures that the equipment can operate reliably, even in challenging settings, without compromising performance or safety. Moreover, special steel alloys provide improved machinability, allowing for more precise manufacturing of industrial equipment components. This precision ensures that the equipment is built to exact specifications, resulting in enhanced overall performance and efficiency. Furthermore, special steel alloys can be tailored to possess specific characteristics, such as high conductivity or magnetic properties. This makes them ideal for applications requiring electrical conductivity or magnetism. By customizing special steel, industrial equipment can be developed to meet specific needs, maximizing efficiency and effectiveness. Overall, the utilization of special steel in industrial equipment significantly enhances its efficiency. Through enhanced strength, durability, heat and corrosion resistance, improved machinability, and customization options, the lifespan, performance, reliability, and safety of the equipment are all improved. Consequently, this leads to enhanced operational efficiency and productivity in industrial settings.
Q:How are copper alloys used in electrical applications?
Copper alloys are extensively used in electrical applications due to their excellent electrical conductivity and thermal properties. They are used in the production of electrical wires, connectors, and busbars, ensuring efficient transmission of electricity. Copper alloys also offer good corrosion resistance, making them suitable for outdoor and marine electrical systems. Additionally, their high strength and ductility allow for easy fabrication and installation in various electrical components.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords